Applications of stable isotope-based metabolomics and fluxomics toward synthetic biology of cyanobacteria

被引:22
作者
Babele, Piyoosh Kumar [1 ]
Young, Jamey D. [1 ,2 ]
机构
[1] Vanderbilt Univ, Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Mol Physiol & Biophys, 221 Kirkland Hall, Nashville, TN 37235 USA
关键词
cyanobacteria; fluxomics; mass spectrometry; metabolic flux; metabolomics; SP PCC 6803; C-13 FLUX ANALYSIS; PHOTOAUTOTROPHIC METABOLISM; LIGNOCELLULOSIC BIOMASS; MASS-SPECTROMETRY; GENE-EXPRESSION; PLATFORM; NETWORK; MUTANT; NMR;
D O I
10.1002/wsbm.1472
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Unique features of cyanobacteria (e.g., photosynthesis and nitrogen fixation) make them potential candidates for production of biofuels and other value-added biochemicals. As prokaryotes, they can be readily engineered using synthetic and systems biology tools. Metabolic engineering of cyanobacteria for the synthesis of desired compounds requires in-depth knowledge of central carbon and nitrogen metabolism, pathway fluxes, and their regulation. Metabolomics and fluxomics offer the comprehensive analysis of metabolism by directly characterizing the biochemical activities of cells. This information is acquired by measuring the abundance of key metabolites and their rates of interconversion, which can be achieved by labeling cells with stable isotopes, quantifying metabolite pool sizes and isotope incorporation by gas chromatography/liquid chromatography-mass spectrometry GC/LC-MS or nuclear magnetic resonance (NMR), and mathematical modeling to estimate in vivo metabolic fluxes. Herein, we review progress that has been made to adapt metabolomics and fluxomics tools to examine model cyanobacterial species. We summarize the application of metabolic flux analysis (MFA) strategies to identify metabolic bottlenecks that can be targeted to boost cell growth, improve stress tolerance, or enhance biochemical production in cyanobacteria. Despite the advances in metabolomics, fluxomics, and other synthetic and systems biology tools during the past years, further efforts are required to increase our understanding of cyanobacterial metabolism in order to create efficient photosynthetic hosts for the production of value-added compounds. This article is categorized under: Laboratory Methods and Technologies > Metabolomics Biological Mechanisms > Metabolism Analytical and Computational Methods > Analytical Methods
引用
收藏
页数:19
相关论文
共 87 条
[1]   Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity [J].
Abernathy, Mary H. ;
Czajka, Jeffrey J. ;
Allen, Douglas K. ;
Hill, Nicholas C. ;
Cameron, Jeffrey C. ;
Tang, Yinjie J. .
METABOLIC ENGINEERING, 2019, 54 :222-231
[2]   Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis [J].
Abernathy, Mary H. ;
Yu, Jingjie ;
Ma, Fangfang ;
Liberton, Michelle ;
Ungerer, Justin ;
Hollinshead, Whitney D. ;
Gopalakrishnan, Saratram ;
He, Lian ;
Maranas, Costas D. ;
Pakrasi, Himadri B. ;
Allen, Doug K. ;
Tang, Yinjie J. .
BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
[3]   13C flux analysis of cyanobacterial metabolism [J].
Adebiyi, Adeola O. ;
Jazmin, Lara J. ;
Young, Jamey D. .
PHOTOSYNTHESIS RESEARCH, 2015, 126 (01) :19-32
[4]   Metabolic engineering of cyanobacteria for the synthesis of commodity products [J].
Angermayr, S. Andreas ;
Rovira, Aleix Gorchs ;
Hellingwerf, Klaas J. .
TRENDS IN BIOTECHNOLOGY, 2015, 33 (06) :352-361
[5]   Metabolomics Applied to Diabetes Research Moving From Information to Knowledge [J].
Bain, James R. ;
Stevens, Robert D. ;
Wenner, Brett R. ;
Ilkayeva, Olga ;
Muoio, Deborah M. ;
Newgard, Christopher B. .
DIABETES, 2009, 58 (11) :2429-2443
[6]   Measuring Cellular Biomass Composition for Computational Biology Applications [J].
Beck, Ashley E. ;
Hunt, Kristopher A. ;
Carlson, Ross P. .
PROCESSES, 2018, 6 (05)
[7]   An LC-MS-Based Chemical and Analytical Method for Targeted Metabolite Quantification in the Model Cyanobacterium Synechococcus sp. PCC 7002 [J].
Bennette, Nicholas B. ;
Eng, John F. ;
Dismukes, G. Charles .
ANALYTICAL CHEMISTRY, 2011, 83 (10) :3808-3816
[8]  
Bingol Kerem, 2018, High Throughput, V7, DOI 10.3390/ht7020009
[9]   Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes [J].
Broddrick, Jared T. ;
Welkie, David G. ;
Jallet, Denis ;
Golden, Susan S. ;
Peers, Graham ;
Palsson, Bernhard O. .
METABOLIC ENGINEERING, 2019, 52 :42-56
[10]   A roadmap for interpreting 13C metabolite labeling patterns from cells [J].
Buescher, Joerg M. ;
Antoniewicz, Maciek R. ;
Boros, Laszlo G. ;
Burgess, Shawn C. ;
Brunengraber, Henri ;
Clish, Clary B. ;
DeBerardinis, Ralph J. ;
Feron, Olivier ;
Frezza, Christian ;
Ghesquiere, Bart ;
Gottlieb, Eyal ;
Hiller, Karsten ;
Jones, Russell G. ;
Kamphorst, Jurre J. ;
Kibbey, Richard G. ;
Kimmelman, Alec C. ;
Locasale, Jason W. ;
Lunt, Sophia Y. ;
Maddocks, Oliver D. K. ;
Malloy, Craig ;
Metallo, Christian M. ;
Meuillet, Emmanuelle J. ;
Munger, Joshua ;
Noeh, Katharina ;
Rabinowitz, Joshua D. ;
Ralser, Markus ;
Sauer, Uwe ;
Stephanopoulos, Gregory ;
St-Pierre, Julie ;
Tennant, Daniel A. ;
Wittmann, Christoph ;
Vander Heiden, Matthew G. ;
Vazquez, Alexei ;
Vousden, Karen ;
Young, Jamey D. ;
Zamboni, Nicola ;
Fendt, Sarah-Maria .
CURRENT OPINION IN BIOTECHNOLOGY, 2015, 34 :189-201