Stabilized rounded addition of hierarchical matrices

被引:10
作者
Bebendorf, M.
Hackbusch, W.
机构
[1] Univ Leipzig, Inst Math, Fak Math & Informat, D-04103 Leipzig, Germany
[2] Max Planck Inst Math, D-04103 Leipzig, Germany
关键词
hierarchical matrices; stabilized approximate operations;
D O I
10.1002/nla.525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The efficiency of hierarchical matrices is based on the approximate evaluation of usual matrix operations. The introduced approximation error may, however, lead to a loss of important matrix properties. In this article we present a technique which preserves the positive definiteness of a matrix independently of the approximation quality. The importance of this technique is illustrated by an elliptic mixed boundary value problem with tiny Dirichlet part. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:407 / 423
页数:17
相关论文
共 19 条
[1]  
[Anonymous], THESIS U SAARBRUCKEN
[2]   Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation [J].
Bebendorf, M. ;
Grzhibovskis, R. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (14) :1721-1747
[3]   Hierarchical LU decomposition-based preconditioners for BEM [J].
Bebendorf, M .
COMPUTING, 2005, 74 (03) :225-247
[4]  
Bebendorf M, 2005, MATH COMPUT, V74, P1179, DOI 10.1090/S0025-5718-04-01716-8
[5]   Adaptive low-rank approximation of collocation matrices [J].
Bebendorf, M ;
Rjasanow, S .
COMPUTING, 2003, 70 (01) :1-24
[6]   Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L∞-coefficients [J].
Bebendorf, M ;
Hackbusch, W .
NUMERISCHE MATHEMATIK, 2003, 95 (01) :1-28
[7]  
BEBENDORF M, 2005, THESIS M PLANCK I MI
[8]  
Eckart G., 1936, PSYCHOMETRIKA, V1, P211
[9]   Multilevel approximation of boundary integral operators [J].
Giebermann, K .
COMPUTING, 2001, 67 (03) :183-207
[10]  
Golub G. H., 1996, MATRIX COMPUTATIONS