Uniqueness and Existence for Inverse Problem of Determining an Order of Time-Fractional Derivative of Subdiffusion Equation

被引:13
作者
Ashurov, R. R. [1 ]
Fayziev, Yu E. [2 ]
机构
[1] Acad Sci Uzbek, Inst Math, Tashkent 100170, Uzbekistan
[2] Natl Univ Uzbekistan, Tashkent 700174, Uzbekistan
关键词
nonhomogeneous subdiffusion equation; Riemann-Liouville derivatives; inverse and initial-boundary value problem; determination of the fractional derivative's order; Fourier method; OPERATOR;
D O I
10.1134/S1995080221030069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An inverse problem for determining the order of time-fractional derivative in a nonhomogeneous subdiffusion equation with an arbitrary elliptic differential operator with constant coefficients in N-dimensional torus is considered. Using the classical Fourier method it is proved, that the value of the solution at a fixed time instant as the observation data recovers uniquely the order of fractional derivative. Generalization to an arbitrary N-dimensional domain and to elliptic operators with variable coefficients is considered.
引用
收藏
页码:508 / 516
页数:9
相关论文
共 50 条
[41]   Boundary value problem for the heat equation with a load as the Riemann-Liouville fractional derivative [J].
Pskhu, A., V ;
Kosmakova, M. T. ;
Akhmanova, D. M. ;
Kassymova, L. Zh ;
Assetov, A. A. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01) :74-82
[42]   Numerical Approach of Cattaneo Equation with Time Caputo-Fabrizio Fractional Derivative [J].
Soori, Zoleikha ;
Aminataei, Azim .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (02) :127-153
[43]   Inverse Problem for Mixed-type Equation with an Elliptic Operator of Arbitrary Order [J].
Ashurov, R. R. ;
Murzambetova, M. B. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) :533-541
[44]   Inverse Problem for Mixed-type Equation with an Elliptic Operator of Arbitrary Order [J].
R. R. Ashurov ;
M. B. Murzambetova .
Lobachevskii Journal of Mathematics, 2023, 44 :533-541
[45]   A FRACTIONAL PARABOLIC INVERSE PROBLEM INVOLVING A TIME-DEPENDENT MAGNETIC POTENTIAL [J].
Li, Li .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) :435-452
[46]   On the time-fractional SchrOdinger equation: Theoretical analysis and numerical solution by matrix Mittag-Leffler functions [J].
Garrappa, Roberto ;
Moret, Igor ;
Popolizio, Marina .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (05) :977-992
[47]   On a Nonlocal Inverse Boundary Value Problem for the Sixth-Order Boussinesq Equation with Nonlocal Time Integral Conditions of the Second Kind [J].
A. S. Farajov .
Mathematical Notes, 2023, 114 :763-775
[48]   On a Nonlocal Inverse Boundary Value Problem for the Sixth-Order Boussinesq Equation with Nonlocal Time Integral Conditions of the Second Kind [J].
Farajov, A. S. .
MATHEMATICAL NOTES, 2023, 114 (5-6) :763-775
[49]   A Non-Local Problem for the Fractional-Order Rayleigh-Stokes Equation [J].
Ashurov, Ravshan ;
Mukhiddinova, Oqila ;
Umarov, Sabir .
FRACTAL AND FRACTIONAL, 2023, 7 (06)
[50]   FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION [J].
Sun, Hongguang ;
Chen, Wen ;
Li, Changpin ;
Chen, Yangquan .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04)