Uniqueness and Existence for Inverse Problem of Determining an Order of Time-Fractional Derivative of Subdiffusion Equation

被引:13
作者
Ashurov, R. R. [1 ]
Fayziev, Yu E. [2 ]
机构
[1] Acad Sci Uzbek, Inst Math, Tashkent 100170, Uzbekistan
[2] Natl Univ Uzbekistan, Tashkent 700174, Uzbekistan
关键词
nonhomogeneous subdiffusion equation; Riemann-Liouville derivatives; inverse and initial-boundary value problem; determination of the fractional derivative's order; Fourier method; OPERATOR;
D O I
10.1134/S1995080221030069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An inverse problem for determining the order of time-fractional derivative in a nonhomogeneous subdiffusion equation with an arbitrary elliptic differential operator with constant coefficients in N-dimensional torus is considered. Using the classical Fourier method it is proved, that the value of the solution at a fixed time instant as the observation data recovers uniquely the order of fractional derivative. Generalization to an arbitrary N-dimensional domain and to elliptic operators with variable coefficients is considered.
引用
收藏
页码:508 / 516
页数:9
相关论文
共 50 条
[31]   EXISTENCE AND UNIQUENESS OF A POSITIVE SOLUTION TO GENERALIZED NONLOCAL THERMISTOR PROBLEMS WITH FRACTIONAL-ORDER DERIVATIVES [J].
Ammi, Moulay Rchid Sidi ;
Torres, Delfim F. M. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2012, 4 (02) :267-276
[32]   Existence and Uniqueness of Positive Solution for a Fractional Dirichlet Problem with Combined Nonlinear Effects in Bounded Domains [J].
Bachar, Imed ;
Maagli, Habib .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[33]   Laplace-based physics-informed neural networks for solving nonlinear coefficient inverse problem for acoustic equation with fractional derivative [J].
Chen, Zihao ;
Qiu, Changxin ;
Li, Zhiyuan ;
Xu, Song .
PHYSICS OF FLUIDS, 2025, 37 (07)
[34]   A Boundary-Value Problem with Shifted for a Mixed Type Equation with Fractional Derivative [J].
Repin, O. A. ;
Sayganova, S. A. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2011, 11 (01) :89-94
[35]   INVERSE PROBLEM OF DETERMINING THE KERNEL IN THE INTEGRO-DIFFERENTIAL BEAM VIBRATION EQUATION [J].
Durdiev, U. D. .
EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2025, 13 (01) :50-63
[36]   Inverse Problem of Determining a Kernel of the Viscoelasticity Equation with Distributed Data in a Limited Domain [J].
Safarov, J. Sh. ;
Kalandarov, U. N. ;
Safarova, M. J. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (07) :3380-3390
[37]   Lie symmetry analysis and soliton solutions of time-fractional K(m, n) equation [J].
Wang, G. W. ;
Hashemi, M. S. .
PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (01)
[38]   On the non-uniqueness of the solution to a boundary value problem of heat conduction with a load in the form of a fractional derivative [J].
Kosmakova, M. T. ;
Izhanova, K. A. ;
Khamzeyeva, A. N. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 108 (04) :98-106
[39]   About One Inverse Problem of Time Fractional Evolution with an Involution Perturbation [J].
Aibek, Baurzhan ;
Aimakhanova, Aizat ;
Besbaev, Gani ;
Sadybekov, Makhmud A. .
INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018), 2018, 1997
[40]   Boundary value problem for the heat equation with a load as the Riemann-Liouville fractional derivative [J].
Pskhu, A., V ;
Kosmakova, M. T. ;
Akhmanova, D. M. ;
Kassymova, L. Zh ;
Assetov, A. A. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01) :74-82