Electrical conductivity of mixed conductors (YO1.5)x-(CeO2)y-(ZrO2)1-x-y

被引:0
|
作者
Zhou Xiangyong [1 ]
Fan Zeng [1 ]
Tang Zilong [1 ]
Zhang Zhongtai [1 ]
机构
[1] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
来源
HIGH-PERFORMANCE CERAMICS IV, PTS 1-3 | 2007年 / 336-338卷
关键词
electrical conductivity; mixed conductivity; zirconia; ceria; yttria;
D O I
10.4028/www.scientific.net/KEM.336-338.424
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The Y2O3-ZrO2 binary system ceramic is considered to be most developed in application to the ZrO2-based materials. A cubic fluorite structure is generally achieved, as the metal ion of the additive (Y) takes place of the Zr4+ and oxygen ion vacancies are produced in the lattice to maintain the charge balance. This leads to almost totally ionic conductivity. The introduction of changeable valued CeO2 can further improve the total electronic conductivity through the defect equilibrium reaction between tetravalent Ce4+ and trivalent Ce3+ at high temperature and reducing atmosphere. In this study, solid phase synthesis method was employed for the preparation of (YO1.5)(x)-(CeO2)(0.08)-(ZrO2)(0.9-x) and (YO1.5)(0.05)-(CeO2)(y)-(ZrO2)(0.95-y) ceramics, while four probe DC conductivity measurement method was also applied under the temperature between 300 to 800 degrees C. The results prove that the concentration of Y3+ is the main contribution of the electrical conductivity at low temperature.
引用
收藏
页码:424 / +
页数:3
相关论文
共 50 条
  • [1] Phase stability and transport characteristics of (ZrO2)1-x(Sc2O3)x(CeO2)y and (ZrO2)1-x-y-z(Sc2O3)x(CeO2)y(Y2O3)z solid solution crystals
    Agarkov, D. A.
    Borik, M. A.
    Bublik, V. T.
    Chislov, A. S.
    Kulebyakin, A., V
    Kuritsyna, I. E.
    Kolotygin, V. A.
    Lomonova, E. E.
    Milovich, F. O.
    Myzina, V. A.
    Osiko, V. V.
    Tabachkova, N. Yu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 : 445 - 451
  • [2] Structural Stability and Conductivity of Cubic (WO3)x-(Dy2O3)y-(Bi2O3)1-x-y
    Jung, Su-Ho
    Wachsman, Eric D.
    Jiang, Naixiong
    IONICS, 2002, 8 (3-4) : 210 - 214
  • [3] Bulk conduction and relaxation in [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions at intermediate temperatures
    Yang, Fan
    Zhao, Xiaofeng
    Xiao, Ping
    JOURNAL OF POWER SOURCES, 2011, 196 (11) : 4943 - 4949
  • [4] Phase stability, thermal, electrical and structural properties of (Bi2O3)1-x-y(Sm2O3)x(CeO2)y electrolytes for solid oxide fuel cells
    Polat, Yasin
    Ari, Mehmet
    Dagdemir, Yilmaz
    PHASE TRANSITIONS, 2017, 90 (04) : 387 - 398
  • [5] Catalytic Performance of Ni/CeO2/X-ZrO2 (X = Ca, Y) Catalysts in the Aqueous-Phase Reforming of Methanol
    Goma, Daniel
    Jose Delgado, Juan
    Lefferts, Leon
    Faria, Jimmy
    Juan Calvino, Jose
    Angel Cauqui, Miguel
    NANOMATERIALS, 2019, 9 (11)
  • [6] Crystal structure and electrical conductivity of {(ZrO2)0.92(Y2O3)0.08}1-x(CuO)x (x=0, 0.1, 0.2 and 0.3)
    Dong, Yihang
    Wang, Xiangnan
    Han, Ye
    Yao, Shuyu
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 130
  • [7] The multiple dependence of controllable microstructure and mechanical properties of (AlO1.5)x(NdO1.5)x(CeO2)0.12-1.5x(ZrO2)0.88+x ceramics
    Jing, Qiang
    Lyu, Yong
    Cui, Shichuang
    Bao, Jinxiao
    Cai, Changkun
    Xing, Jinxin
    CERAMICS INTERNATIONAL, 2022, 48 (22) : 33011 - 33018
  • [8] Phase assembly and electrical conductivity of spark plasma sintered CeO2–ZrO2 ceramics
    Rosalía Poyato
    Sylvia A. Cruz
    Francisco L. Cumbrera
    Berta Moreno
    Eva Chinarro
    José A. Odriozola
    Journal of Materials Science, 2014, 49 : 6353 - 6362
  • [9] Ionic conductivity in the ternary system (ZrO2)1−0.08x−0.12y–(Y2O3)0.08x–(CaO)0.12y
    Jianghong Gong
    Ying Li
    Zilong Tang
    Zhongtai Zhang
    Journal of Materials Science, 2000, 35 : 3547 - 3551
  • [10] Phase composition, structure and properties of (ZrO2)1-x-y(Sc2O3)x(Y2O3)y, solid solution crystals (x=0.08-0.11; y=0.01-0.02) grown by directional crystallization of the melt
    Borik, M. A.
    Bredikhin, S. I.
    Bublik, V. T.
    Kulebyakin, A. V.
    Kuritsyna, I. E.
    Lomonova, E. E.
    Milovich, F. O.
    Myzina, V. A.
    Osiko, V. V.
    Ryabochkina, P. A.
    Seryakov, S. V.
    Tabachkova, N. Yu.
    JOURNAL OF CRYSTAL GROWTH, 2017, 457 : 122 - 127