On Teitelbaum type L-invariants of Hilbert modular forms attached to definite quaternions

被引:3
作者
Chida, Masataka [1 ]
Mok, Chung Pang [2 ]
Park, Jeehoon [3 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 6068502, Japan
[2] Chinese Acad Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
[3] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, Gyeongbuk, South Korea
基金
新加坡国家研究基金会; 日本学术振兴会;
关键词
Quaternion algebras; Hilbert modular forms; Coleman integrals; ADIC L-FUNCTIONS; HODGE THEORY; VALUES;
D O I
10.1016/j.jnt.2014.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize Teitelbaum's work on the definition of the L-invariant to Hilbert modular forms that arise from definite quaternion algebras over totally real fields by the Jacquet-Langlands correspondence. Conjecturally this coincides with the Fontaine-Mazur type L-invariant, defined by applying Fontaine's theory to the Galois representation associated to Hilbert modular forms. An exceptional zero conjecture for the p-adic L-function of Hilbert modular forms is also proposed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:633 / 665
页数:33
相关论文
共 18 条
[1]  
[Anonymous], 2004, Geometric aspects of Dwork theory
[2]  
[Anonymous], 1980, Lecture Notes in Math.
[3]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409
[4]  
Casselman B., 1973, MATH ANN, V201, P301
[5]   P-ADIC L-FUNCTIONS OF HILBERT MODULAR-FORMS [J].
DABROWSKI, A .
ANNALES DE L INSTITUT FOURIER, 1994, 44 (04) :1025-1041
[6]   Integration on Hp x H and arithmetic applications [J].
Darmon, H .
ANNALS OF MATHEMATICS, 2001, 154 (03) :589-639
[7]  
DESHALIT E, 1989, J REINE ANGEW MATH, V400, P3
[8]  
Gerritzen L., 1980, Lecture Notes in Mathematics, V817
[9]  
Hida H., 2006, OXFORD MATH MONOGR
[10]   Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms [J].
Iovita, A ;
Spiess, M .
INVENTIONES MATHEMATICAE, 2003, 154 (02) :333-384