Developing integrated Tokamak dynamics models for next-generation machine control

被引:5
作者
Morrow-Jones, JW [1 ]
Firestone, MA [1 ]
Mau, TK [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
FUSION TECHNOLOGY | 1997年 / 32卷 / 04期
关键词
D O I
10.13182/FST97-A19903
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The modeling steps needed to create dynamically based automated control of tokamak plasmas are traced. This involves integrating models of current/magnetic-flux dynamics; plasma transport; plasma geometry; and source terms, such as lower hybrid, fast wave, and pellet-fueling deposition. Perturbative analysis of these models then yields the linear response of the tokamak to changes in coil voltages, applied radio-frequency power,; or pellet-firing frequency. Comparison of the linear response models to nonlinear numerical calculations reveals that the plasma position and shape modeling will require future refinements.
引用
收藏
页码:526 / 544
页数:19
相关论文
共 50 条
  • [21] Developing next-generation systems for surgical navigation
    Madhavan, Karthik
    Wang, Michael Y.
    JOURNAL OF NEUROSURGERY-SPINE, 2018, 28 (04) : 355 - 356
  • [22] Clues for developing next-generation cancer immunotherapy
    Inozume, Takashi
    Fukushima, Satoshi
    EXPERIMENTAL DERMATOLOGY, 2023, 32 (03) : 238 - 239
  • [23] I am Developing the Next-Generation Engine
    Hoshi, Mitsuru
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2011, 56 (09) : 573 - 576
  • [24] Development of Next-Generation Spherical Tokamak Concept. The Globus-3 Tokamak
    V. B. Minaev
    A. B. Mineev
    N. V. Sakharov
    Yu. V. Petrov
    N. N. Bakharev
    E. N. Bondarchuk
    A. V. Bondar
    V. I. Varfolomeev
    A. A. Voronova
    V. K. Gusev
    V. V. D’yachenko
    A. A. Kavin
    I. V. Kedrov
    A. Yu. Konin
    A. M. Kudryavtseva
    G. S. Kurskiev
    A. N. Labusov
    I. V. Miroshnikov
    I. Yu. Rodin
    V. N. Tanchuk
    V. A. Trofimov
    O. G. Filatov
    P. B. Shchegolev
    Plasma Physics Reports, 2023, 49 : 1578 - 1587
  • [25] Development of Next-Generation Spherical Tokamak Concept. The Globus-3 Tokamak
    Minaev, V. B.
    Mineev, A. B.
    Sakharov, N. V.
    Petrov, Yu. V.
    Bakharev, N. N.
    Bondarchuk, E. N.
    Bondar, A. V.
    Varfolomeev, V. I.
    Voronova, A. A.
    Gusev, V. K.
    D'yachenko, V. V.
    Kavin, A. A.
    Kedrov, I. V.
    Konin, A. Yu.
    Kudryavtseva, A. M.
    Kurskiev, G. S.
    Labusov, A. N.
    Miroshnikov, I. V.
    Rodin, I. Yu.
    Tanchuk, V. N.
    Trofimov, V. A.
    Filatov, O. G.
    Shchegolev, P. B.
    PLASMA PHYSICS REPORTS, 2023, 49 (12) : 1578 - 1587
  • [26] Applications of a next-generation programmable ultrasound machine
    Basoglu, C
    Kim, J
    Winter, TC
    Kim, YM
    IMAGE DISPLAY - MEDICAL IMAGING 1997, 1997, 3031 : 374 - 384
  • [27] Next-Generation Machine Learning for Biological Networks
    Camacho, Diogo M.
    Collins, Katherine M.
    Powers, Rani K.
    Costello, James C.
    Collins, James J.
    CELL, 2018, 173 (07) : 1581 - 1592
  • [28] Thermal issues in next-generation integrated circuits
    Gurrum, SP
    Suman, SK
    Joshi, YK
    Fedorov, AG
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2004, 4 (04) : 709 - 714
  • [29] Next-generation Web tools for control
    Felton, B
    INTECH, 2001, 48 (03) : 52 - 54
  • [30] QoS control in next-generation networks
    Leon-Garcia, Alberto
    Choi, Jun Kyun
    Widjaja, Indra
    IEEE COMMUNICATIONS MAGAZINE, 2007, 45 (09) : 114 - 114