Developing integrated Tokamak dynamics models for next-generation machine control

被引:5
|
作者
Morrow-Jones, JW [1 ]
Firestone, MA [1 ]
Mau, TK [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
FUSION TECHNOLOGY | 1997年 / 32卷 / 04期
关键词
D O I
10.13182/FST97-A19903
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The modeling steps needed to create dynamically based automated control of tokamak plasmas are traced. This involves integrating models of current/magnetic-flux dynamics; plasma transport; plasma geometry; and source terms, such as lower hybrid, fast wave, and pellet-fueling deposition. Perturbative analysis of these models then yields the linear response of the tokamak to changes in coil voltages, applied radio-frequency power,; or pellet-firing frequency. Comparison of the linear response models to nonlinear numerical calculations reveals that the plasma position and shape modeling will require future refinements.
引用
收藏
页码:526 / 544
页数:19
相关论文
共 50 条
  • [1] Next-generation plasma control in the DIII-D tokamak
    Walker, ML
    Ferron, JR
    Humphreys, DA
    Johnson, RD
    Leuer, JA
    Penaflor, BG
    Piglowski, DA
    Ariola, M
    Pironti, A
    Schuster, E
    FUSION ENGINEERING AND DESIGN, 2003, 66-68 : 749 - 753
  • [2] Applied Machine Learning for Developing Next-Generation Functional Materials
    Dinic, Filip
    Singh, Kamalpreet
    Dong, Tony
    Rezazadeh, Milad
    Wang, Zhibo
    Khosrozadeh, Ali
    Yuan, Tiange
    Voznyy, Oleksandr
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (51)
  • [3] Emerging applications in tokamak plasma control - Control solutions for next-generation tokamaks
    Walker, ML
    Humphreys, DA
    Mazon, D
    Moreau, D
    Okabayashi, M
    Osborne, TH
    Schuster, E
    IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (02): : 35 - 63
  • [4] Developing the next-generation climate system models: challenges and achievements
    Slingo, Julia
    Bates, Kevin
    Nikiforakis, Nikos
    Piggott, Matthew
    Roberts, Malcolm
    Shaffrey, Len
    Stevens, Ian
    Vidale, Pier Luigi
    Weller, Hilary
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1890): : 815 - 831
  • [5] Next-generation concurrent engineering: Developing models to complement point designs
    Morse, Elisabeth
    Leavens, Tracy
    Cohanim, Babak
    Harmon, Corey
    Mahr, Eric
    Lewis, Brian
    2006 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2006, : 4485 - +
  • [6] DEVELOPING NEXT-GENERATION LASERS FOR PRODUCTION
    ASHLEY, S
    MECHANICAL ENGINEERING, 1992, 114 (06) : 14 - 14
  • [7] DESIRABLE ENGINEERING FEATURES OF THE NEXT-GENERATION TOKAMAK DEVICE
    BROWN, TG
    FLANAGAN, CA
    NUCLEAR TECHNOLOGY-FUSION, 1983, 4 (02): : 1031 - 1036
  • [8] THE TIME-MACHINE - THE NEXT-GENERATION
    MACPHERSON, ED
    ALBERTA JOURNAL OF EDUCATIONAL RESEARCH, 1995, 41 (03): : 304 - 307
  • [9] Machine learning for next-generation in healthcare
    Lorenc, Andzelika
    Mendes, Barbara B.
    Conniot, Joao
    Sousa, Diana P.
    Conde, Joao
    Rodrigues, Tiago
    MATTER, 2021, 4 (10) : 3078 - 3080
  • [10] Machine learning for next-generation thermoelectrics
    Saglik, Kivanc
    Srinivasan, Siddharth
    Victor, Varsha
    Wang, Xizu
    Zhang, Wei
    Yan, Qingyu
    MATERIALS TODAY ENERGY, 2024, 46