Fibonacci factoriangular numbers

被引:7
作者
Gomez Ruiz, Carlos Alexis [1 ]
Luca, Florian [2 ,3 ]
机构
[1] Univ Valle, Dept Matemat, Calle 13 100-00, Cali 25360, Colombia
[2] Univ Witwatersrand, Sch Math, Private Bag X3, ZA-2050 Johannesburg, South Africa
[3] Univ Ostrava, Dept Math, Fac Sci, 30 Dubna 22, CZ-70103 Ostrava 1, Czech Republic
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2017年 / 28卷 / 04期
关键词
Fibonacci numbers; Factoriangular numbers; p-adic linear forms in logarithms of algebraic numbers;
D O I
10.1016/j.indag.2017.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (F-m)(m)>= 0 be the Fibonacci sequence given by F-0 = 0, F-1 = 1 and Fm+2 = Fm+1 + Fm, for all m >= 0. In Castillo (2015), it is conjectured that 2, 5 and 34 are the only Fibonacci numbers of the form n! + n (n+1)/2, for some positive integer n. In this paper, we confirm the above conjecture. (C) 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:796 / 804
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 2015, ASIA PAC J MULTIDISC
[2]  
[Anonymous], 1969, FIBONACCI QUART
[3]   Effective lower bounds of the p-adic distance between powers of algebraic numbers [J].
Bugeaud, Y ;
Laurent, M .
JOURNAL OF NUMBER THEORY, 1996, 61 (02) :311-342
[4]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[5]  
Cohn J. H., 1964, Proc. Lond. Math. Soc., V39, P537, DOI 10.1112/jlms/s1-39.1.537
[6]  
Ljunggren W., 1952, NORSKE VID SELSK FOR, V24, P82
[7]   Fibonacci numbers of the form k2+k+2 [J].
Luca, F .
APPLICATIONS OF FIBONACCI NUMBERS, VOL 8, 1999, :241-249
[8]  
Luca F., 2000, Portugal. Math, V57, P243
[9]  
LUO M, 1989, FIBONACCI QUART, V27, P98
[10]  
PETHO A, 1983, PUBL MATH-DEBRECEN, V30, P117