Object Segmentation through Multiple Instance Learning

被引:0
|
作者
Gondra, Iker [1 ]
Xu, Tao [2 ]
Chiu, David K. Y. [2 ]
Cormier, Michael [3 ]
机构
[1] St Francis Xavier Univ, Dept Comp Sci, Antigonish, NS B2G 1C0, Canada
[2] Univ Guelph, Sch Comp Sci, Guelph, ON, Canada
[3] Univ Waterloo, Sch Comp Sci, Waterloo, ON, Canada
来源
IMAGE AND SIGNAL PROCESSING, ICISP 2014 | 2014年 / 8509卷
基金
加拿大自然科学与工程研究理事会;
关键词
Image segmentation; object recognition; multiple instance learning; diverse density; adaptive kernel; IMAGE SEGMENTATION; MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An object of interest (OOI) in an image usually consists of visually coherent regions that, together, encompass the entire OOI. We use Multiple Instance Learning (MIL) to determine which regions in an over-segmented image are part of the OOI. In the learning stage, a set of over-segmented images containing, i.e., positive, and not containing, i.e., negative, an instance of the OOI is used as training data. The resulting learned prototypes represent the visual appearances of OOI regions. In the OOI segmentation stage, the new image is over-segmented and regions that match prototypes are merged. Our MIL method does not require prior knowledge about the number of regions in the OOI. We show that, with the coexistence of multiple prototypes corresponding to the regions of the OOI, the maxima of the formulation are good estimates of such regions. We present initial results over a set of images with a controlled, relatively simple OOI.
引用
收藏
页码:568 / 577
页数:10
相关论文
共 50 条
  • [1] LIP: Learning Instance Propagation for Video Object Segmentation
    Lyu, Ye
    Vosselman, George
    Xia, Gui-Song
    Yang, Michael Ying
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2739 - 2748
  • [2] Review of object instance segmentation based on deep learning
    Tian, Di
    Han, Yi
    Wang, Biyao
    Guan, Tian
    Gu, Hengzhi
    Wei, Wei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [3] Multiple Instance Active Learning for Object Detection
    Yuan, Tianning
    Wan, Fang
    Fu, Mengying
    Liu, Jianzhuang
    Xu, Songcen
    Ji, Xiangyang
    Ye, Qixiang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5326 - 5335
  • [4] Video Object Segmentation Using Global and Instance Embedding Learning
    Ge, Wenbin
    Lu, Xiankai
    Shen, Jianbing
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16831 - 16840
  • [5] A Survey on Object Instance Segmentation
    Sharma R.
    Saqib M.
    Lin C.T.
    Blumenstein M.
    SN Computer Science, 3 (6)
  • [6] Object Recognition using Multiple Instance Learning with Unclear Object Teaching
    Tamura, Yasuto
    Lim, Hun-ok
    2015 24TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2015, : 309 - 312
  • [7] Multiple Instance Differentiation Learning for Active Object Detection
    Wan, Fang
    Ye, Qixiang
    Yuan, Tianning
    Xu, Songcen
    Liu, Jianzhuang
    Ji, Xiangyang
    Huang, Qingming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12133 - 12147
  • [8] Improved weighted multiple instance learning for object tracking
    Dou, Jianfang
    Qin, Qin
    Tu, Zimei
    OPTIK, 2015, 126 (24): : 5287 - 5293
  • [9] Salient Object Detection via Multiple Instance Learning
    Huang, Fang
    Qi, Jinqing
    Lu, Huchuan
    Zhang, Lihe
    Ruan, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 1911 - 1922
  • [10] Robust Object Tracking with Online Multiple Instance Learning
    Babenko, Boris
    Yang, Ming-Hsuan
    Belongie, Serge
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1619 - 1632