An electrically active microneedle array for electroporation

被引:115
作者
Choi, Seong-O [1 ,2 ]
Kim, Yeu Chun [2 ]
Park, Jung-Hwan [4 ,5 ]
Hutcheson, Joshua [2 ]
Gill, Harvinder S. [3 ]
Yoon, Yong-Kyu [1 ]
Prausnitz, Mark R. [2 ,3 ]
Allen, Mark G. [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[4] Kyungwon Univ, Dept BioNano Technol, Songnam 461701, Gyeonggi Do, South Korea
[5] Kyungwon Univ, Gachon BioNano Res Inst, Songnam 461701, Gyeonggi Do, South Korea
关键词
Microneedle; Electroporation; Micromolding; Laser ablation; DU145; cell; TRANSDERMAL DRUG-DELIVERY; DNA VACCINES; GENE-TRANSFER; IN-VIVO; ENHANCED DELIVERY; SKIN; IMMUNIZATION; SYSTEM; ELECTROCHEMOTHERAPY; MICROFABRICATION;
D O I
10.1007/s10544-009-9381-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We have designed and fabricated a microneedle array with electrical functionality with the final goal of electroporating skin's epidermal cells to increase their transfection by DNA vaccines. The microneedle array was made of polymethylmethacrylate (PMMA) by micromolding technology from a polydimethylsiloxane (PDMS) mold, followed by metal deposition, patterning using laser ablation, and electrodeposition. This microneedle array possessed sufficient mechanical strength to penetrate human skin in vivo and was also able to electroporate both red blood cells and human prostate cancer cells as an in vitro model to demonstrate cell membrane permeabilization. A computational model to predict the effective volume for electroporation with respect to applied voltages was constructed from finite element simulation. This study demonstrates the mechanical and electrical functionalities of the first MEMS-fabricated microneedle array for electroporation, designed for DNA vaccine delivery.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 43 条
[1]   Gene transfer into muscle by electroporation in vivo [J].
Aihara, H ;
Miyazaki, J .
NATURE BIOTECHNOLOGY, 1998, 16 (09) :867-870
[2]  
Alberts B, 2002, MOL BIOL CELL, P627
[3]   The green solvent ethyl lactate: an experimental and theoretical characterization [J].
Aparicio, Santiago ;
Alcalde, Rafael .
GREEN CHEMISTRY, 2009, 11 (01) :65-78
[4]   Electroporation improves the efficacy of DNA vaccines in large animals [J].
Babiuk, S ;
Baca-Estrada, ME ;
Foldvari, M ;
Storms, M ;
Rabussay, D ;
Widera, G ;
Babiuk, LA .
VACCINE, 2002, 20 (27-28) :3399-3408
[5]   Polymer microfabrication technologies for microfluidic systems [J].
Becker, Holger ;
Gaertner, Claudia .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 390 (01) :89-111
[6]   Quantitative study of electroporation-mediated molecular uptake and cell viability [J].
Canatella, PJ ;
Karr, JF ;
Petros, JA ;
Prausnitz, MR .
BIOPHYSICAL JOURNAL, 2001, 80 (02) :755-764
[7]   Three dimensional MEMS microfluidic perfusion system for thick brain slice cultures [J].
Choi, Yoonsu ;
McClain, Maxine A. ;
LaPlaca, Michelle C. ;
Frazier, A. Bruno ;
Allen, Mark G. .
BIOMEDICAL MICRODEVICES, 2007, 9 (01) :7-13
[8]   Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma [J].
Daud, Adil I. ;
DeConti, Ronald C. ;
Andrews, Stephanie ;
Urbas, Patricia ;
Riker, Adam I. ;
Sondak, Vernon K. ;
Munster, Pamela N. ;
Sullivan, Daniel M. ;
Ugen, Kenneth E. ;
Messina, Jane L. ;
Heller, Richard .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (36) :5896-5903
[9]   DNA vaccines: Progress and challenges [J].
Donnelly, JJ ;
Wahren, B ;
Liu, MA .
JOURNAL OF IMMUNOLOGY, 2005, 175 (02) :633-639
[10]   Effect of microneedle design on pain in human volunteers [J].
Gill, Harvinder S. ;
Denson, Donald D. ;
Burris, Brett A. ;
Prausnitz, Mark R. .
CLINICAL JOURNAL OF PAIN, 2008, 24 (07) :585-594