A multilinear Phelps' Lemma

被引:3
作者
Aron, Richard [1 ]
Cardwell, Antonia
Garcia, Domingo
Zalduendo, Ignacio
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Millersville Univ Pennsylvania, Dept Math, Millersville, PA 17551 USA
[3] Univ Valencia, Dept Anal Matemat, E-46100 Burjassot, Spain
[4] Univ Torcuato Tella, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
Phelps' Lemma; multilinear forms;
D O I
10.1090/S0002-9939-07-08762-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a multilinear version of Phelps' Lemma: if the zero sets of multilinear forms of norm one are `close', then so are the multilinear forms.
引用
收藏
页码:2549 / 2554
页数:6
相关论文
共 9 条
[1]   There is no bilinear Bishop-Phelps theorem [J].
Acosta, MD ;
Aguirre, FJ ;
Paya, R .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 93 :221-227
[2]  
Aron R, 2006, NOTE MAT, V25, P49
[3]   Lower bounds for norms of products of polynomials [J].
Benítez, C ;
Sarantopoulos, Y ;
Tonge, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :395-408
[4]   A PROOF THAT EVERY BANACH SPACE IS SUBREFLEXIVE [J].
BISHOP, E ;
PHELPS, RR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (01) :97-&
[5]  
CARDWELL A, 2006, INT J MATH MATH SCI, V2006
[6]   A characterization of subspaces of weakly compactly generated Banach spaces [J].
Fabian, A ;
Montesinos, V ;
Zizler, V .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 :457-464
[7]  
Fabian M., 2001, CMS BOOKS MATHOUVRAG, V8
[8]  
Phelps R, 1960, P AM MATH SOC, V11, P976, DOI 10.1090/S0002-9939-1960-0123172-X
[9]   Geometry of spaces of polynomials [J].
Ryan, RA ;
Turett, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 221 (02) :698-711