Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in Caenorhabditis elegans

被引:6
作者
Dridi, Haikel [1 ]
Forrester, Frances [1 ]
Umanskaya, Alisa [1 ]
Xie, Wenjun [1 ]
Reiken, Steven [1 ]
Lacampagne, Alain [2 ,3 ,4 ]
Marks, Andrew [1 ]
机构
[1] Clyde & Helen Wu Ctr Mol Cardiol, Dept Physiol & Cellular Biophys, New York, NY USA
[2] Montpellier Univ, PhyMedExp, INSERM, CNRS,CHRU Montpellier, Montpellier, France
[3] Montpellier Univ, Med Intens Care Unit, Montpellier, France
[4] Montpellier Univ Hlth Care Ctr, Montpellier, France
关键词
aging; skeletal muscle; calcium; UNC-68; oxidative stress; C; elegans; CALCIUM-RELEASE CHANNEL; INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR; CARDIAC RYANODINE RECEPTOR; MOTOR-ACTIVITY DECLINE; PROTEIN-KINASE-A; INTRACELLULAR CALCIUM; LIFE-SPAN; IN-VIVO; SARCOPLASMIC-RETICULUM; COMPLEX;
D O I
10.7554/eLife.75529
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in Caenorhabditis elegans (C. elegans); however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals, UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Furthermore, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in 'leaky' channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes similar to 2 years in mice and similar to 80 years in humans, occurs in less than 2-3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in lifespan among species.
引用
收藏
页数:22
相关论文
共 90 条
[51]   Functional Aging in the Nervous System Contributes to Age-Dependent Motor Activity Decline in C. elegans [J].
Liu, Jie ;
Zhang, Bi ;
Lei, Haoyun ;
Feng, Zhaoyang ;
Liu, Jianfeng ;
Hsu, Ao-Lin ;
Xu, X. Z. Shawn .
CELL METABOLISM, 2013, 18 (03) :392-402
[52]   Genetic dissection of ion currents underlying all-or-none action potentials in C-elegans body-wall muscle cells [J].
Liu, Ping ;
Ge, Qian ;
Chen, Bojun ;
Salkoff, Lawrence ;
Kotlikoff, Michael I. ;
Wang, Zhao-Wen .
JOURNAL OF PHYSIOLOGY-LONDON, 2011, 589 (01) :101-117
[53]   Role of Leaky Neuronal Ryanodine Receptors in Stress-Induced Cognitive Dysfunction [J].
Liu, Xiaoping ;
Betzenhauser, Matthew J. ;
Reiken, Steve ;
Meli, Albano C. ;
Xie, Wenjun ;
Chen, Bi-Xing ;
Arancio, Ottavio ;
Marks, Andrew R. .
CELL, 2012, 150 (05) :1055-1067
[54]   The Evolutionary Theories of Aging Revisited - A Mini-Review [J].
Ljubuncic, Predrag ;
Reznick, Abraham Z. .
GERONTOLOGY, 2009, 55 (02) :205-216
[55]   Gait-specific adaptation of locomotor activity in response to dietary restriction in Caenorhabditis elegans [J].
Lueersen, Kai ;
Faust, Ulla ;
Gottschling, Dieter-Christian ;
Doering, Frank .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2014, 217 (14) :2480-2488
[56]   A guide for the perplexed - Towards an understanding of the molecular basis of heart failure [J].
Marks, AR .
CIRCULATION, 2003, 107 (11) :1456-1459
[57]   Cellular functions of immunophilins [J].
Marks, AR .
PHYSIOLOGICAL REVIEWS, 1996, 76 (03) :631-649
[58]   Tissue-specific isoforms of the single C. elegans Ryanodine receptor gene unc-68 control specific functions [J].
Marques, Filipe ;
Thapliyal, Saurabh ;
Javer, Avelino ;
Shrestha, Priyanka ;
Brown, Andre E. X. ;
Glauser, Dominique A. .
PLOS GENETICS, 2020, 16 (10)
[59]   PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts [J].
Marx, SO ;
Reiken, S ;
Hisamatsu, Y ;
Jayaraman, T ;
Burkhoff, D ;
Rosemblit, N ;
Marks, AR .
CELL, 2000, 101 (04) :365-376
[60]   unc-68 encodes a ryanodine receptor involved in regulating C-elegans body-wall muscle contraction [J].
Maryon, EB ;
Coronado, R ;
Anderson, P .
JOURNAL OF CELL BIOLOGY, 1996, 134 (04) :885-893