Differential Deep Convolutional Neural Network Model for Brain Tumor Classification

被引:97
作者
Abd El Kader, Isselmou [1 ]
Xu, Guizhi [1 ]
Shuai, Zhang [1 ]
Saminu, Sani [1 ]
Javaid, Imran [1 ]
Salim Ahmad, Isah [1 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
关键词
MRI images; classification; brain tumor; differential deep-CNN; accuracy; loss values; MRI SEGMENTATION; IMAGES; ULTRASOUND;
D O I
10.3390/brainsci11030352
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The classification of brain tumors is a difficult task in the field of medical image analysis. Improving algorithms and machine learning technology helps radiologists to easily diagnose the tumor without surgical intervention. In recent years, deep learning techniques have made excellent progress in the field of medical image processing and analysis. However, there are many difficulties in classifying brain tumors using magnetic resonance imaging; first, the difficulty of brain structure and the intertwining of tissues in it; and secondly, the difficulty of classifying brain tumors due to the high density nature of the brain. We propose a differential deep convolutional neural network model (differential deep-CNN) to classify different types of brain tumor, including abnormal and normal magnetic resonance (MR) images. Using differential operators in the differential deep-CNN architecture, we derived the additional differential feature maps in the original CNN feature maps. The derivation process led to an improvement in the performance of the proposed approach in accordance with the results of the evaluation parameters used. The advantage of the differential deep-CNN model is an analysis of a pixel directional pattern of images using contrast calculations and its high ability to classify a large database of images with high accuracy and without technical problems. Therefore, the proposed approach gives an excellent overall performance. To test and train the performance of this model, we used a dataset consisting of 25,000 brain magnetic resonance imaging (MRI) images, which includes abnormal and normal images. The experimental results showed that the proposed model achieved an accuracy of 99.25%. This study demonstrates that the proposed differential deep-CNN model can be used to facilitate the automatic classification of brain tumors.
引用
收藏
页数:16
相关论文
共 49 条
[1]  
Afshar P, 2019, INT CONF ACOUST SPEE, P1368, DOI [10.1109/icassp.2019.8683759, 10.1109/ICASSP.2019.8683759]
[2]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[3]   Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network [J].
Amin, Javaria ;
Sharif, Muhammad ;
Gul, Nadia ;
Yasmin, Mussarat ;
Shad, Shafqat Ali .
PATTERN RECOGNITION LETTERS, 2020, 129 :115-122
[4]   Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network [J].
Badza, Milica M. ;
Barjaktarovic, Marko C. .
APPLIED SCIENCES-BASEL, 2020, 10 (06)
[5]   Convolutional neural networks for brain tumour segmentation [J].
Bhandari, Abhishta ;
Koppen, Jarrad ;
Agzarian, Marc .
INSIGHTS INTO IMAGING, 2020, 11 (01)
[6]   Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images [J].
Budak, Umit ;
Comert, Zafer ;
Rashid, Zryan Najat ;
Sengur, Abdulkadir ;
Cibuk, Musa .
APPLIED SOFT COMPUTING, 2019, 85
[7]  
Chavan N.V, 2015, INT J COMPUT APPL 09, V112, P8887
[8]   Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks [J].
Chen, Hao ;
Ni, Dong ;
Qin, Jing ;
Li, Shengli ;
Yang, Xin ;
Wang, Tianfu ;
Heng, Pheng Ann .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (05) :1627-1636
[9]   Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition (vol 10, e0140381, 2015) [J].
Cheng, Jun ;
Huang, Wei ;
Cao, Shuangliang ;
Yang, Ru ;
Yang, Wei ;
Yun, Zhaoqiang ;
Wang, Zhijian ;
Feng, Qianjin .
PLOS ONE, 2015, 10 (12)
[10]   Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture [J].
Cinar, Ahmet ;
Yildirim, Muhammed .
MEDICAL HYPOTHESES, 2020, 139