Nontrivial generalizations of the Schwinger pair production result

被引:16
作者
Avan, J
Fried, HM
Gabellini, Y
机构
[1] Univ Paris 06, LPTHE, F-75252 Paris 05, France
[2] Brown Univ, Dept Phys, Providence, RI 02912 USA
[3] Inst Non Lineaire Nice, F-06560 Valbonne, France
来源
PHYSICAL REVIEW D | 2003年 / 67卷 / 01期
关键词
D O I
10.1103/PhysRevD.67.016003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present new, nontrivial generalizations of the recent Tomaras-Tsamis-Woodard extension of the original Schwinger formula for charged pair production in a constant electric field. That extension generalized the Schwinger result to electric fields E-3(x(+/-)) dependent upon one or the other light-cone coordinates, x(+) or x(-), x(+/-)=x(3)+/-x(0); the present work generalizes their result to electric fields E-3(x(+),x(-)) dependent upon both coordinates. Displayed in the form of a final, functional integral, or equivalent linkage operation, our result does not appear to be exactly calculable in the general case; and we give a simple, approximate example when E-3(x(+),x(-)) is a slowly varying function of its variables. We extend this result to the more general case where E can point in a varying direction, and where an arbitrary magnetic field (B) over right arrow is present; both extensions can be cast into the form of Gaussian-weighted functional integrals over well defined factors, which are amenable to approximations depending on the nature and variations of the fields.
引用
收藏
页数:7
相关论文
共 13 条
[1]   AN APPROXIMATE REPRESENTATION OF SU(2) ORDERED EXPONENTIALS IN THE STOCHASTIC LIMIT [J].
BRACHET, ME ;
FRIED, HM .
PHYSICS LETTERS A, 1984, 103 (6-7) :309-311
[2]   APPROXIMATE REPRESENTATIONS OF SU(2) ORDERED EXPONENTIALS IN THE ADIABATIC AND STOCHASTIC LIMITS [J].
BRACHET, ME ;
FRIED, HM .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (01) :15-27
[3]  
BROWN LS, 1964, PHYS REV A, V133, P705
[4]   APPLICATION OF FUNCTIONAL METHODS IN QUANTUM FIELD THEORY AND QUANTUM STATISTICS (2) [J].
FRADKIN, ES .
NUCLEAR PHYSICS, 1966, 76 (03) :588-&
[5]   ON UNITARY SU(N) ORDERED EXPONENTIALS IN A STRONG COUPLING LIMIT [J].
FRIED, HM .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (06) :1275-1282
[6]   The one loop effective action of QED for a general class of electric fields [J].
Fried, HM ;
Woodard, RP .
PHYSICS LETTERS B, 2002, 524 (1-2) :233-239
[7]   Pair production via crossed lasers [J].
Fried, HM ;
Gabellini, Y ;
McKellar, BHJ ;
Avan, J .
PHYSICAL REVIEW D, 2001, 63 (12)
[8]   SPECIAL VARIANT OF THE FRADKIN REPRESENTATION [J].
FRIED, HM ;
GABELLINI, YM .
PHYSICAL REVIEW D, 1995, 51 (02) :906-918
[9]   PHASE AVERAGING AND GENERALIZED EIKONAL REPRESENTATIONS [J].
FRIED, HM ;
GABELLINI, YM .
PHYSICAL REVIEW D, 1995, 51 (02) :890-905
[10]   ORDERED EXPONENTIALS AND DIFFERENTIAL-EQUATIONS [J].
FRIED, HM .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (05) :1161-1163