A class of predefined-time stable dynamical systems

被引:367
作者
Diego Sanchez-Torres, Juan [1 ,2 ]
Gomez-Gutierrez, David [3 ]
Lopez, Esteban [4 ]
Loukianov, Alexander G. [1 ]
机构
[1] CINVESTAV IPN, Unidad Guadalajara, Av Bosque 1145, Zapopan 45019, Mexico
[2] ITESO Guadalajara, Dept Math & Phys, Perifer Sur 8585, Tlaquepaque 45604, Mexico
[3] Tecnoldg Monterrey, Campus Guadalajara,Av Ramon Corona 2514, Zapopan 45201, Mexico
[4] Univ Nacl Colombia Sede Medellin, Fac Minas, Grp Invest Proc Dinam Kalman, Cra 80 65-223, Medellin, Colombia
关键词
finite-time stability; sliding-mode control; Lyapunov stability; robust control; consensus; SLIDING MODE CONTROL; CONTROLLABLE SYSTEMS; CONSENSUS PROBLEMS; STABILITY; STABILIZATION; NETWORKS; OBSERVER; FEEDBACK; DESIGN; AGENTS;
D O I
10.1093/imamci/dnx004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces predefined-time stable dynamical systems which are a class of fixed-time stable dynamical systems with settling time as an explicit parameter that can be defined in advance. This concept allows for the design of observers and controllers for problems that require to fulfil hard time constraints. An example is encountered in the fault detection and isolation problem, where mode detection in a timely manner needs to be guaranteed in order to apply a recovery action. Furthermore, through the notion of co strong predefined-time stability, the approach hereinafter presented permits to overcome the problem of overestimation of the convergence time bound encountered in previous methods for the analysis of finite-time stable systems, where the stabilization time is often an unbounded function of the initial conditions of the system. A Lyapunov analysis is provided together with a detailed discussion of the applications to consensus and first order sliding mode controller design.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 36 条
[1]   Homogeneous approximation, recursive observer design, and output feedback [J].
Andrieu, Vincent ;
Praly, Laurent ;
Astolfi, Alessandro .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1814-1850
[2]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[3]   Averaging Over General Random Networks [J].
Cai, Kai .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (12) :3186-3191
[4]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[5]   Finite-time convergent gradient flows with applications to network consensus [J].
Cortés, Jorge .
AUTOMATICA, 2006, 42 (11) :1993-2000
[6]  
Cruz-Zavala Emmanuel, 2010, 2010 11th International Workshop on Variable Structure Systems (VSS 2010), P14, DOI 10.1109/VSS.2010.5544656
[7]   Uniform Robust Exact Differentiator [J].
Cruz-Zavala, Emmanuel ;
Moreno, Jaime A. ;
Fridman, Leonid M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) :2727-2733
[8]  
Sánchez-Tones JD, 2015, P AMER CONTR CONF, P5842, DOI 10.1109/ACC.2015.7172255
[9]   SLIDING MODE CONTROL IN DYNAMIC-SYSTEMS [J].
DRAKUNOV, SV ;
UTKIN, VI .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 55 (04) :1029-1037
[10]  
Drazenovic B., 1969, Automatica, V5, P287, DOI 10.1016/0005-1098(69)90071-5