Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions

被引:380
作者
Yang, Yuechao [1 ]
Mu, Tiancheng [1 ]
机构
[1] Renmin Univ China, Dept Chem, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN EVOLUTION REACTION; DEEP EUTECTIC SOLVENT; ORGANIC FRAMEWORK NANOSHEETS; DOUBLE HYDROXIDE NANOSHEETS; LAYERED DOUBLE HYDROXIDES; OXYGEN EVOLUTION; 2,5-FURANDICARBOXYLIC ACID; ELECTROCATALYTIC OXIDATION; LEVULINIC ACID; IN-SITU;
D O I
10.1039/d1gc00914a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical conversion is emerging as a powerful and promising method to produce a wide range of high-value chemicals on account of mild operation conditions, controllable selectivity, and scalability. 5-Hydroxymethylfurfural (HMF), with simple molecular structures including furan rings, -C = O, and -OH groups, is considered one of the most versatile platform molecules. The electrooxidation of bio-based HMF to furandicarboxylic acid (FDCA), a crucial bio-based precursor of polyethylene furanoate (PEF), which would probably replace petroleum-based polyethylene terephthalate (PET), has recently attracted increasing attention. Here, we review the HMF electrochemical oxidation, from reaction pathway/mechanism to catalysts and coupling reactions. First, a pH-dependent reaction pathway is proposed, and the reaction mechanism (direct oxidation and indirect oxidation) is summarized systematically, which is also suitable for electrochemical oxidation of other small organic molecules containing aldehyde/alcohol groups (e.g., methanol, ethanol, glycerol, and glucose) to some extent. Then, the progress, advantages and disadvantages of HMF electrooxidation catalysts of noble metals, non-noble metals, and non-metals are reviewed, particularly on non-noble metal catalysts. Furthermore, for more efficient energy utilization, HMF electrooxidation coupled with H-2 evolution, CO2 reduction, N-2 reduction, and organic reduction are discussed. Finally, a few unique insights into reaction mechanism, an assessment about catalyst performance and an outlook for further development of this topic are provided. This review can offer a guideline for the in-depth understanding of electrochemical oxidation of small organic molecules as well as the design of advanced anodic electrocatalysts towards the utilization and production of renewable resources.
引用
收藏
页码:4228 / 4254
页数:27
相关论文
共 202 条
[1]   Influence of Temperature and Electrolyte Concentration on the Structure and Catalytic Oxygen Evolution Activity of Nickel-Iron Layered Double Hydroxide [J].
Andronescu, Corina ;
Seisel, Sabine ;
Wilde, Patrick ;
Barwe, Stefan ;
Masa, Justus ;
Chen, Yen-Ting ;
Ventosa, Edgar ;
Schuhmann, Wolfgang .
CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (52) :13773-13777
[2]   Electrocatalytic Oxidation of 5-(Hydroxymethyl)furfural Using High-Surface-Area Nickel Boride [J].
Barwe, Stefan ;
Weidner, Jonas ;
Cychy, Steffen ;
Morales, Dulce M. ;
Dieckhofer, Stefan ;
Hiltrop, Dennis ;
Masa, Justus ;
Muhler, Martin ;
Schuhmann, Wolfgang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (35) :11460-11464
[3]   TEMPO in Chemical Transformations: From Homogeneous to Heterogeneous [J].
Beejapur, Hazi Ahmad ;
Zhang, Qi ;
Hu, Kecheng ;
Zhu, Li ;
Wang, Jianli ;
Ye, Zhibin .
ACS CATALYSIS, 2019, 9 (04) :2777-2830
[4]   Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH [J].
Bender, Michael T. ;
Lam, Yan Choi ;
Hammes-Schiffer, Sharon ;
Choi, Kyoung-Shin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) :21538-21547
[5]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[6]   Structural principles to steer the selectivity of the electrocatalytic reduction of aliphatic ketones on platinum [J].
Bondue, Christoph J. ;
Calle-Vallejo, Federico ;
Figueiredo, Marta C. ;
Koper, Marc T. M. .
NATURE CATALYSIS, 2019, 2 (03) :243-250
[7]   Homologous CoP/NiCoP Heterostructure on N-Doped Carbon for Highly Efficient and pH-Universal Hydrogen Evolution Electrocatalysis [J].
Boppella, Ramireddy ;
Tan, Jeiwan ;
Yang, Wooseok ;
Moon, Jooho .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (06)
[8]   Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited [J].
Bozell, Joseph J. ;
Petersen, Gene R. .
GREEN CHEMISTRY, 2010, 12 (04) :539-554
[9]   Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles [J].
Burke, Michaela S. ;
Enman, Lisa J. ;
Batchellor, Adam S. ;
Zou, Shihui ;
Boettcher, Shannon W. .
CHEMISTRY OF MATERIALS, 2015, 27 (22) :7549-7558
[10]   Two-dimensional metal-organic framework nanosheets for highly efficient electrocatalytic biomass 5-(hydroxymethyl)furfural (HMF) valorization [J].
Cai, Mengke ;
Zhang, Yawei ;
Zhao, Yiyue ;
Liu, Qinglin ;
Li, Yinle ;
Li, Guangqin .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (39) :20386-20392