共 60 条
Highly sensitive enzyme-free glucose sensor based on CuO-NiO nanocomposites by electrospinning
被引:33
作者:
Xu, Yanhong
[1
]
Ding, Yaping
[2
]
Zhang, Lihong
[3
,4
]
Zhang, Xinxin
[5
]
机构:
[1] Xuzhou Coll Ind Technol, Sch Mat Engn, Xuzhou 221140, Jiangsu, Peoples R China
[2] Shanghai Univ, Sch Sci, Shanghai, Peoples R China
[3] Tianjin Univ, Sch Chem Engn & Technol, Dept Catalysis Sci & Technol, Tianjin 300350, Peoples R China
[4] Tianjin Univ, Sch Chem Engn & Technol, Tianjin Key Lab Appl Catalysis Sci & Technol, Tianjin 300350, Peoples R China
[5] Qingdao Libangda Marine Technol Co Ltd, Qingdao, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Fiber;
Electrospinning;
Enzyme-free;
Glucose;
METAL-ORGANIC FRAMEWORK;
PERFORMANCE;
ELECTRODES;
NANOPARTICLES;
NANOFIBERS;
NANOSTRUCTURES;
BIOSENSORS;
D O I:
10.1016/j.coco.2021.100687
中图分类号:
TB33 [复合材料];
学科分类号:
摘要:
CuO-NiO nanocomposites have been prepared after calcining fiber mats at 450 degrees C by electrospinning technique. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. SEM micrographs depict regular nanofibers without beads. The XRD and TEM results confirm that as-synthesized materials are the composite nanoparticles composed of the crystal phases of CuO and NiO. An enzyme-free glucose sensor has been first fabricated with nanocomposites CuO-NiO-modified on glassy carbon electrode (GCE). Cyclic voltammetry and current-time curve techniques are mainly used to enlighten the electrochemical properties of the modified electrode (CuO-NiO/GCE) in alkaline aqueous solutions. Experimental parameters like applied potential and concentration of modifier on GCE have been optimized, and the analytical performances of as-fabricated biosensor for glucose determination have been investigated in detail. Under optimal conditions (8.0 mu L modifier, +0.55 V), CuO-NiO/GCE exhibits excellent properties in glucose detection for the concentrations with a fast response (similar to 1s), a low detection limit of 0.08 mu M (S/N = 3), a wide range of 0.2 mu M-1.0 mM with a linear correlation coefficient of 0.998 and a very high sensitivity of 4022 mu A mM(-1) cm(-2). In addition CuO-NiO/GCE shows good selectivity, reproducibility and longtime stability. Excellent electrochemical catalytic performance for glucose demonstrates that as-synthesized nanocomposite CuO-NiO is an outstanding and promising electrode material toward glucose.
引用
收藏
页数:8
相关论文