Assimilating All-sky Infrared Radiances from Himawari-8 Using the 3DVar Method for the Prediction of a Severe Storm over North China

被引:36
作者
Xu, Dongmei [1 ,2 ]
Liu, Zhiquan [3 ]
Fan, Shuiyong [4 ]
Chen, Min [4 ]
Shen, Feifei [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast, Key Lab Meteorol Disaster, Joint Int Res Lab Climate & Environm Change,Minis, Nanjing 210044, Peoples R China
[2] Heavy Rain & Drought Flood Disasters Plateau & Ba, Chengdu 610225, Peoples R China
[3] Natl Ctr Atmos Res, Boulder, CO 80301 USA
[4] China Meteorol Adm, Inst Urban Meteorol, Beijing 100089, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Himawari-8; data assimilation; all-sky; storm case; VARIATIONAL DATA ASSIMILATION; BACKGROUND ERROR COVARIANCE; PRECIPITATION FORECASTS; RADIATIVE-TRANSFER; BIAS CORRECTION; SATELLITE DATA; MODEL CLOUDS; IMPACT; SYSTEM; IMAGER;
D O I
10.1007/s00376-020-0219-z
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Although radar observations capture storm structures with high spatiotemporal resolutions, they are limited within the storm region after the precipitation formed. Geostationary satellites data cover the gaps in the radar network prior to the formation of the precipitation for the storms and their environment. The study explores the effects of assimilating the water vapor channel radiances from Himawari-8 data with Weather Research and Forecasting model data assimilation system (WRFDA) for a severe storm case over north China. A fast cloud detection scheme for Advanced Himawari imager (AHI) radiance is enhanced in the framework of the WRFDA system initially in this study. The bias corrections, the cloud detection for the clear-sky AHI radiance, and the observation error modeling for cloudy radiance are conducted before the data assimilation. All AHI radiance observations are fully applied without any quality control for all-sky AHI radiance data assimilation. Results show that the simulated all-sky AHI radiance fits the observations better by using the cloud dependent observation error model, further improving the cloud heights. The all-sky AHI radiance assimilation adjusts all types of hydrometeor variables, especially cloud water and precipitation snow. It is proven that assimilating all-sky AHI data improves hydrometeor specifications when verified against the radar reflectivity. Consequently, the assimilation of AHI observations under the all-sky condition has an overall improved impact on both the precipitation locations and intensity compared to the experiment with only conventional and AHI clear-sky radiance data.
引用
收藏
页码:661 / 676
页数:16
相关论文
共 68 条
[1]   Adaptive bias correction for satellite data in a numerical weather prediction system [J].
Auligne, T. ;
McNally, A. P. ;
Dee, D. P. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (624) :631-642
[2]   THE WEATHER RESEARCH AND FORECASTING MODEL'S COMMUNITY VARIATIONAL/ENSEMBLE DATA ASSIMILATION SYSTEM WRFDA [J].
Barker, Dale ;
Huang, Xiang-Yu ;
Liu, Zhiquan ;
Auligne, Tom ;
Zhang, Xin ;
Rugg, Steven ;
Ajjaji, Raji ;
Bourgeois, Al ;
Bray, John ;
Chen, Yongsheng ;
Demirtas, Meral ;
Guo, Yong-Run ;
Henderson, Tom ;
Huang, Wei ;
Lin, Hui-Chuan ;
Michalakes, John ;
Rizvi, Syed ;
Zhang, Xiaoyan .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2012, 93 (06) :831-843
[3]  
Barker DM, 2004, MON WEATHER REV, V132, P897, DOI 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO
[4]  
2
[5]   An Introduction to Himawari-8/9-Japan's New-Generation Geostationary Meteorological Satellites [J].
Bessho, Kotaro ;
Date, Kenji ;
Hayashi, Masahiro ;
Ikeda, Akio ;
Imai, Takahito ;
Inoue, Hidekazu ;
Kumagai, Yukihiro ;
Miyakawa, Takuya ;
Murata, Hidehiko ;
Ohno, Tomoo ;
Okuyama, Arata ;
Oyama, Ryo ;
Sasaki, Yukio ;
Shimazu, Yoshio ;
Shimoji, Kazuki ;
Sumida, Yasuhiko ;
Suzuki, Masuo ;
Taniguchi, Hidetaka ;
Tsuchiyama, Hiroaki ;
Uesawa, Daisaku ;
Yokota, Hironobu ;
Yoshida, Ryo .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2016, 94 (02) :151-183
[6]   Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction [J].
Buehner, M. ;
Morneau, J. ;
Charette, C. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (05) :669-682
[7]   Refinement of the Use of Inhomogeneous Background Error Covariance Estimated from Historical Forecast Error Samples and its Impact on Short-Term Regional Numerical Weather Prediction [J].
Chen, Yaodeng ;
Wang, Jia ;
Gao, Yufang ;
Chen, Xiaomeng ;
Wang, Hongli ;
Huang, Xiang-Yu .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2018, 96 (05) :429-446
[8]   Balance characteristics of multivariate background error covariance for rainy and dry seasons and their impact on precipitation forecasts of two rainfall events [J].
Chen, Yaodeng ;
Xia, Xue ;
Min, Jinzhong ;
Huang, Xiang-Yu ;
Rizvi, Syed R. H. .
METEOROLOGY AND ATMOSPHERIC PHYSICS, 2016, 128 (05) :579-600
[9]  
Chevallier F, 2002, MON WEATHER REV, V130, P712, DOI 10.1175/1520-0493(2002)130<0712:MCASFS>2.0.CO
[10]  
2