Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry

被引:60
作者
Povstenko, Yuriy [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
Non-Fickean diffusion; Diffusion-wave equation; Fractional calculus; Integral transforms; HEAT-CONDUCTION EQUATION; FUNDAMENTAL-SOLUTIONS; ANOMALOUS DIFFUSION; RADIAL DIFFUSION; RANDOM-WALK; STRESSES; TRANSPORT; SYSTEM;
D O I
10.1007/s11071-009-9566-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper is concerned with analysis of time-fractional diffusion-wave equation with Caputo fractional derivative in a half-space. Several examples of problems with Dirichlet and Neumann conditions at the boundary of a half-space are solved using integral transforms technique. For the first and second time-derivative terms, the obtained solutions reduce to the solutions of the ordinary diffusion and wave equations. Numerical results are presented graphically for various values of order of fractional derivative.
引用
收藏
页码:593 / 605
页数:13
相关论文
共 61 条
  • [1] Response of a diffusion-wave system subjected to deterministic and stochastic fields
    Agrawal, OP
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (04): : 265 - 274
  • [2] Solution for a fractional diffusion-wave equation defined in a bounded domain
    Agrawal, OP
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 145 - 155
  • [3] [Anonymous], 2006, THEORY APPL FRACTION
  • [4] [Anonymous], 2000, Applications of Fractional Calculus in Physics
  • [5] [Anonymous], 2008, FRAC CALC APPL ANAL
  • [6] [Anonymous], 1954, TABLES INTEGRAL TRAN
  • [7] [Anonymous], 1998, MATIMYAS MAT
  • [8] Barlow M. T., 1998, LECT PROBABILITY THE, V1690
  • [9] Ben-Avraham D., 2000, Diffusion and reactions in fractals and disordered systems
  • [10] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293