Joint Inference on Structural and Diffusion MRI for Sequence-Adaptive Bayesian Segmentation of Thalamic Nuclei with Probabilistic Atlases

被引:8
作者
Iglesias, Juan Eugenio [1 ,2 ,3 ,4 ]
Van Leemput, Koen [2 ,3 ,5 ]
Golland, Polina [4 ]
Yendiki, Anastasia [2 ,3 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, Ctr Med Image Comp, London, England
[2] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02114 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Tech Univ Denmark, Dept Hlth Technol, Lyngby, Denmark
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019 | 2019年 / 11492卷
基金
欧盟地平线“2020”;
关键词
IMAGES;
D O I
10.1007/978-3-030-20351-1_60
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Segmentation of structural and diffusion MRI (sMRI/dMRI) is usually performed independently in neuroimaging pipelines. However, some brain structures (e.g., globus pallidus, thalamus and its nuclei) can be extracted more accurately by fusing the two modalities. Following the framework of Bayesian segmentation with probabilistic atlases and unsupervised appearance modeling, we present here a novel algorithm to jointly segment multi-modal sMRI/dMRI data. We propose a hierarchical likelihood term for the dMRI defined on the unit ball, which combines the Beta and Dimroth-Scheidegger-Watson distributions to model the data at each voxel. This term is integrated with a mixture of Gaussians for the sMRI data, such that the resulting joint unsupervised likelihood enables the analysis of multi-modal scans acquired with any type of MRI contrast, b-values, or number of directions, which enables wide applicability. We also propose an inference algorithm to estimate the maximum-a-posteriori model parameters from input images, and to compute the most likely segmentation. Using a recently published atlas derived from histology, we apply our method to thalamic nuclei segmentation on two datasets: HCP (state of the art) and ADNI (legacy) - producing lower sample sizes than Bayesian segmentation with sMRI alone.
引用
收藏
页码:767 / 779
页数:13
相关论文
共 24 条
[11]  
Mardia K. V., 2009, DIRECTIONAL STAT, V494
[12]   Automatic tractography segmentation using a high-dimensional white matter atlas [J].
O'Donnell, Lauren J. ;
Westin, Carl-Fredrik .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (11) :1562-1575
[13]   A Bayesian model of shape and appearance for subcortical brain segmentation [J].
Patenaude, Brian ;
Smith, Stephen M. ;
Kennedy, David N. ;
Jenkinson, Mark .
NEUROIMAGE, 2011, 56 (03) :907-922
[14]   QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy [J].
Roy, Abhijit Guha ;
Conjeti, Sailesh ;
Navab, Nassir ;
Wachinger, Christian ;
Weiner, Michael W. ;
Aisen, Paul ;
Weiner, Michael ;
Petersen, Ronald ;
Jack, Clifford R., Jr. ;
Jagust, William ;
Trojanowki, John Q. ;
Toga, Arthur W. ;
Green, Robert C. ;
Saykin, Andrew J. ;
Morris, John ;
Shaw, Leslie M. ;
Khachaturian, Zaven ;
Sorensen, Greg ;
Carrillo, Maria ;
Kuller, Lew ;
Raichle, Marc ;
Paul, Steven ;
Davies, Peter ;
Fillit, Howard ;
Hefti, Franz ;
Holtzman, David ;
Mesulam, M. Marcel ;
Potter, William ;
Snyder, Peter ;
Montine, Tom ;
Jimenez, Gustavo ;
Donohue, Michael ;
Gessert, Devon ;
Harless, Kelly ;
Salazar, Jennifer ;
Cabrera, Yuliana ;
Walter, Sarah ;
Hergesheimer, Lindsey ;
Beckett, Laurel ;
Harvey, Danielle ;
Bernstein, Matthew ;
Fox, Nick ;
Thompson, Paul ;
Schuff, Norbert ;
DeCarli, Charles ;
Borowski, Bret ;
Gunter, Jeff ;
Senjem, Matt ;
Vemuri, Prashanthi ;
Jones, David .
NEUROIMAGE, 2019, 186 :713-727
[15]   Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography [J].
Saygin, Zeynep M. ;
Osher, David E. ;
Augustinack, Jean ;
Fischl, Bruce ;
Gabrieli, John D. E. .
NEUROIMAGE, 2011, 56 (03) :1353-1361
[16]   Advances in diffusion MRI acquisition and processing in the Human Connectome Project [J].
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Xu, Junqian ;
Andersson, Jesper L. ;
Moeller, Steen ;
Auerbach, Edward J. ;
Glasser, Matthew F. ;
Hernandez, Moises ;
Sapiro, Guillermo ;
Jenkinson, Mark ;
Feinberg, David A. ;
Yacoub, Essa ;
Lenglet, Christophe ;
Van Essen, David C. ;
Ugurbil, Kamil ;
Behrens, Timothy E. J. .
NEUROIMAGE, 2013, 80 :125-143
[17]  
Stough JV, 2014, LECT NOTES COMPUT SC, V8675, P169, DOI 10.1007/978-3-319-10443-0_22
[18]   The WU-Minn Human Connectome Project: An overview [J].
Van Essen, David C. ;
Smith, Stephen M. ;
Barch, Deanna M. ;
Behrens, Timothy E. J. ;
Yacoub, Essa ;
Ugurbil, Kamil .
NEUROIMAGE, 2013, 80 :62-79
[19]   Encoding Probabilistic Brain Atlases Using Bayesian Inference [J].
Van Leemput, Koen .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (06) :822-837
[20]   Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers [J].
Wassermann, D. ;
Bloy, L. ;
Kanterakis, E. ;
Verma, R. ;
Deriche, R. .
NEUROIMAGE, 2010, 51 (01) :228-241