Symplectic Yang-Mills theory, Ricci tensor, and connections

被引:2
作者
Habermann, Katharina
Habermann, Lutz
Rosenthal, Paul
机构
[1] SUB Gottingen, D-37073 Gottingen, Germany
[2] Leibniz Univ Hannover, Inst Differential Geometry, D-30167 Hannover, Germany
[3] Univ Greifswald, Dept Math & Comp Sci, D-17487 Greifswald, Germany
关键词
D O I
10.1007/s00526-006-0077-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Yang-Mills theory in a purely symplectic framework is developed. The corresponding Euler-Lagrange equations are derived and first integrals are given. We relate the results to the work of Bourgeois and Cahen on preferred symplectic connections.
引用
收藏
页码:137 / 152
页数:16
相关论文
共 15 条
  • [1] On the holonomy of connections with skew-symmetric torsion
    Agricola, I
    Friedrich, T
    [J]. MATHEMATISCHE ANNALEN, 2004, 328 (04) : 711 - 748
  • [2] Symplectic connections
    Bieliavsky, Pierre
    Cahen, Michel
    Gutt, Simone
    Rawnsley, John
    Schwachhoefer, Lorenz
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 375 - 420
  • [3] Symplectic connections with a parallel Ricci curvature
    Boubel, C
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 : 747 - 766
  • [4] A variational principle for symplectic connections
    Bourgeois, F
    Cahen, M
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1999, 30 (03) : 233 - 265
  • [5] BRYLINSKI JL, 1988, J DIFFER GEOM, V28, P93
  • [6] CAHEN M, MATHSG0509014
  • [7] CAHEN M, 2000, POISSON GEOMETRY STA, V51, P31
  • [8] On the geometry of moduli spaces of symplectic structures
    Fricke, J
    Habermann, L
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 109 (04) : 405 - 417
  • [9] Gauduchon P, 1997, B UNIONE MAT ITAL, V11B, P257
  • [10] Habermann K., 2006, LECT NOTES MATH, V1887