Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions

被引:247
作者
Barkoutsos, Panagiotis Kl [1 ,2 ]
Gonthier, Jerome F. [3 ]
Sokolov, Igor [1 ,2 ]
Moll, Nikolaj [1 ]
Salis, Gian [1 ]
Fuhrer, Andreas [1 ]
Ganzhorn, Marc [1 ]
Egger, Daniel J. [1 ]
Troyer, Matthias [2 ,4 ]
Mezzacapo, Antonio [5 ]
Filipp, Stefan [1 ]
Tavernelli, Ivano [1 ]
机构
[1] IBM Res GmbH, Zurich Res Lab, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[3] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA
[4] Microsoft Corp, Microsoft Quantum, Redmond, WA 98052 USA
[5] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
MOLECULAR-ORBITAL METHODS; COUPLED-CLUSTER THEORY; GAUSSIAN-TYPE BASIS; ORGANIC-MOLECULES; COMPUTERS; APPROXIMATION; COMPUTATION; CHEMISTRY;
D O I
10.1103/PhysRevA.98.022322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work we investigate methods to improve the efficiency and scalability of quantum algorithms for quantum chemistry applications. We propose a transformation of the electronic structure Hamiltonian in the second quantization framework into the particle-hole picture, which offers a better starting point for the expansion of the system wave function. The state of the molecular system at study is parametrized so as to constrain the sampling of the corresponding wave function within the sector of the molecular Fock space that contains the desired solution. To this end, we explore different mapping schemes to encode the molecular ground state wave function in a quantum register. Taking advantage of known post-Hartree-Fock quantum chemistry approaches and heuristic Hilbert space search quantum algorithms, we propose a new family of quantum circuits based on exchange-type gates that enable accurate calculations while keeping the gate count (i.e., the circuit depth) low. The particle-hole implementation of the unitary coupled-cluster (UCC) method within the variational quantum eigensolver approach gives rise to an efficient quantum algorithm, named q-UCC, with important advantages compared to the straightforward translation of the classical coupled-cluster counterpart. In particular, we show how a single Trotter step in the expansion of the system wave function can accurately and efficiently reproduce the ground-state energy of simple molecular systems.
引用
收藏
页数:13
相关论文
共 64 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[3]   Gaussian form of effective core potential and response function basis set derived from Troullier-Martins pseudopotential: Results for Ag and Au [J].
Alkauskas, A ;
Baratoff, A ;
Bruder, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (33) :6863-6868
[4]  
[Anonymous], 2012, MODERN QUANTUM CHEM
[5]  
[Anonymous], 2017, ARXIV170108213QUANTP
[6]  
[Anonymous], 2003, QUANTUM THEORY MANY
[7]  
[Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
[8]   Low-Depth Quantum Simulation of Materials [J].
Babbush, Ryan ;
Wiebe, Nathan ;
McClean, Jarrod ;
McClain, James ;
Neven, Hartmut ;
Chan, Garnet Kin-Lic .
PHYSICAL REVIEW X, 2018, 8 (01)
[9]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[10]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6