An extension of Kedlaya's algorithm to Artin-Schreier curves in characteristic 2

被引:0
作者
Denef, J
Vercauteren, F
机构
[1] Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[2] Univ Leuven, Dept Elect Engn, B-3001 Heverlee, Belgium
[3] Univ Bristol, Dept Comp Sci, Bristol BS8 1UB, Avon, England
来源
ALGORITHMIC NUMBER THEORY | 2002年 / 2369卷
关键词
hyperelliptic curves; Monsky-Washnitzer cohomology; Kedlaya's algorithm; Lauder & Wan algorithm; cryptography;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present an extension of Kedlaya's algorithm for computing the zeta function of an Artin-Schreier curve over a finite field F-q of characteristic 2. The algorithm has running time O(g(5+epsilon) log(3+epsilon) q) and needs O(g(3) log(3) q) storage space for a genus g curve. Our first implementation in MAGMA shows that one can now generate hyperelliptic curves suitable for cryptography in reasonable time. We also compare our algorithm with an algorithm by Lauder and Wan which has the same time and space complexity. Furthermore, the method introduced in this paper can be used for any hyperelliptic curve over a finite field of characteristic 2.
引用
收藏
页码:308 / 323
页数:16
相关论文
共 29 条
[1]  
ARITA S, 1999, P C MATH PUBL KEY CR
[2]  
ATKIN AOL, 1992, NUMBER POINTS ELLIPT
[3]  
Blake I.F., 1999, LONDON MATH SOC LECT, V265
[4]   A RIGID ANALYTIC VERSION OF ARTIN,M. THEOREM ON ANALYTIC EQUATIONS [J].
BOSCH, S .
MATHEMATISCHE ANNALEN, 1981, 255 (03) :395-404
[5]  
DENEF J, 2002, EXTENSION KEDLAYAS A, V2
[6]  
Elkies N., 1998, AMS IP STUDIES IN ADVANCED MATHEMATICS, P21
[7]  
Elkik R., 1973, Ann. Sci. Ecole Norm. Sup., V6, P553
[8]  
FOUQUET M, 2000, J RAMANUJAN MATH SOC, V15, P281
[9]  
Galbraith SD, 2002, MATH COMPUT, V71, P393, DOI 10.1090/S0025-5718-00-01297-7
[10]  
Gaudry P, 2000, LECT NOTES COMPUT SC, V1838, P313