Quantum Critical Magnetic Excitations in Spin-1/2 and Spin-1 Chain Systems

被引:19
作者
Xu, Y. [1 ,2 ,3 ]
Wang, L. S. [1 ,2 ]
Huang, Y. Y. [1 ,2 ]
Ni, J. M. [1 ,2 ]
Zhao, C. C. [1 ,2 ]
Dai, Y. F. [1 ,2 ]
Pan, B. Y. [1 ,2 ,4 ]
Hong, X. C. [1 ,2 ]
Chauhan, P. [5 ]
Koohpayeh, S. M. [5 ,6 ]
Armitage, N. P. [5 ]
Li, S. Y. [1 ,2 ,7 ,8 ]
机构
[1] Fudan Univ, State Key Lab Surface Phys, Shanghai 200438, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200438, Peoples R China
[3] East China Normal Univ, Key Lab Polar Mat & Devices MOE, Sch Phys & Elect Sci, Shanghai 200241, Peoples R China
[4] Ludong Univ, Sch Phys & Optoelect Engn, Yantai 264025, Shandong, Peoples R China
[5] Johns Hopkins Univ, Dept Phys & Astron, Inst Quantum Matter, Baltimore, MD 21218 USA
[6] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[7] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[8] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
上海市自然科学基金;
关键词
ISING-MODEL; CONB2O6; FRACTIONALIZATION; TRANSPORT;
D O I
10.1103/PhysRevX.12.021020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of CoNb2O6 sits at the confluence of simplicity and complexity: on one hand, the model for Ising chains???the building blocks of CoNb2O6???in a transverse field can be exactly solved and, thus, serves as an archetype of quantum criticality; on the other hand, the weak but nonzero interchain coupling adds geometric frustration to the stage, substantially complicating the phase diagram. Here we utilize lowtemperature specific heat and thermal conductivity measurements to study the low-lying magnetic excitations in CoNb2O6 and its spin-1 analog NiNb2O6. The thermal conductivity is found to be suppressed around the quantum critical point, where the specific heat is enhanced due to gapless magnetic excitations, pointing to the localized nature of the latter. These results highlight the predominant role of frustration in determining the quantum critical magnetic excitations of spin chains, which may furthermore underlie the remarkable similarities between the phenomenology of these spin-1/2 and spin-1 systems.
引用
收藏
页数:9
相关论文
共 72 条
[1]   Experimental observation of quantum many-body excitations of E8 symmetry in the Ising chain ferromagnet CoNb2O6 [J].
Amelin, Kirill ;
Engelmayer, Johannes ;
Viirok, Johan ;
Nagel, Urmas ;
Room, Toomas ;
Lorenz, Thomas ;
Wang, Zhe .
PHYSICAL REVIEW B, 2020, 102 (10)
[2]  
[Anonymous], 1963, ELECT PHONONS THEORY
[3]   THEORY OF FIRST-ORDER MAGNETIC PHASE CHANGE IN UO2 [J].
BLUME, M .
PHYSICAL REVIEW, 1966, 141 (02) :517-&
[4]   Thermal Conductivity of the Quantum Spin Liquid Candidate EtMe3Sb[Pd(dmit)2]2: No Evidence of Mobile Gapless Excitations [J].
Bourgeois-Hope, P. ;
Laliberte, F. ;
Lefrancois, E. ;
Grissonnanche, G. ;
de Cotret, S. Rene ;
Gordon, R. ;
Kitou, S. ;
Sawa, H. ;
Cui, H. ;
Kato, R. ;
Taillefer, L. ;
Doiron-Leyraud, N. .
PHYSICAL REVIEW X, 2019, 9 (04)
[5]   Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2O6 in a transverse field: Geometric frustration and quantum renormalization effects [J].
Cabrera, I. ;
Thompson, J. D. ;
Coldea, R. ;
Prabhakaran, D. ;
Bewley, R. I. ;
Guidi, T. ;
Rodriguez-Rivera, J. A. ;
Stock, C. .
PHYSICAL REVIEW B, 2014, 90 (01)
[6]   ON POSSIBILITY OF FIRST-ORDER PHASE TRANSITIONS IN ISING SYSTEMS OF TRIPLET IONS WITH ZERO-FIELD SPLITTING [J].
CAPEL, HW .
PHYSICA, 1966, 32 (05) :966-&
[7]   Spectrum and correlation functions of a quasi-one-dimensional quantum Ising model [J].
Carr, ST ;
Tsvelik, AM .
PHYSICAL REVIEW LETTERS, 2003, 90 (17) :4
[8]   Tunable Magnon Interactions in a Ferromagnetic Spin-1 Chain [J].
Chauhan, Prashant ;
Mahmood, Fahad ;
Changlani, Hitesh J. ;
Koohpayeh, S. M. ;
Armitage, N. P. .
PHYSICAL REVIEW LETTERS, 2020, 124 (03)
[9]   Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry [J].
Coldea, R. ;
Tennant, D. A. ;
Wheeler, E. M. ;
Wawrzynska, E. ;
Prabhakaran, D. ;
Telling, M. ;
Habicht, K. ;
Smeibidl, P. ;
Kiefer, K. .
SCIENCE, 2010, 327 (5962) :177-180
[10]  
Giamarchi T., 2004, QUANTUM PHYS ONE DIM