Shape and topology optimization in electrical impedance tomography via moving morphable components method

被引:10
作者
Liu, Dong [1 ,2 ,3 ]
Du, Jiangfeng [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Shape and topology optimization; Moving morphable component method; Electrical impedance tomography; Shape reconstruction; Multiphase conductivity; Inverse problems; RECONSTRUCTION; CONDUCTIVITY; REGULARIZATION; SEGMENTATION; FRAMEWORK; BOUNDARY; MMC;
D O I
10.1007/s00158-021-02970-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper addresses the challenge of reconstructing multiphase conductivity distributions using electrical impedance tomography (EIT). The reconstruction method developed in the paper utilizes the moving morphable component (MMC) approach, where the unknown inclusion(s) to be reconstructed is (are) composed of several candidate morphable components. This work introduces a signed distance-based shape and topology description function (STDF) in lieu of the recently developed hyperelliptic STDF in the MMC approach, thereby absolving the requirement of exponent values. The MMC approach uses explicit geometric entities for the morphable components that are controlled by geometric parameters, such as varying thickness, length, and angle. The optimal inclusion shapes are found by optimizing these geometric parameters in STDFs. Numerical simulation and water tank experiments are used to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:585 / 598
页数:14
相关论文
共 58 条
[1]   Electrical Impedance Tomography: Tissue Properties to Image Measures [J].
Adler, Andy ;
Boyle, Alistair .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (11) :2494-2504
[2]   Multiphase permittivity imaging using absolute value electrical capacitance tomography data and a level set algorithm [J].
Al Hosani, E. ;
Soleimani, M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2070)
[3]   A shape optimization approach for electrical impedance tomography with point measurements [J].
Albuquerque, Yuri Flores ;
Laurain, Antoine ;
Sturm, Kevin .
INVERSE PROBLEMS, 2020, 36 (09)
[4]   Generalized polarization tensors for shape description [J].
Ammari, Habib ;
Garnier, Josselin ;
Kang, Hyeonbae ;
Lim, Mikyoung ;
Yu, Sanghyeon .
NUMERISCHE MATHEMATIK, 2014, 126 (02) :199-224
[5]   APPLIED POTENTIAL TOMOGRAPHY [J].
BARBER, DC ;
BROWN, BH .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1984, 17 (09) :723-733
[6]   Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT [J].
Beretta, Elena ;
Micheletti, Stefano ;
Perotto, Simona ;
Santacesaria, Matteo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 :264-280
[7]  
Chen X., 2018, Computational Methods for Electromagnetic Inverse Scattering, V244, DOI [10.1002/9781119311997, DOI 10.1002/9781119311997]
[8]  
Coniglio Simone, 2019, ARCH COMPUT METHODS, P1
[9]   Real-time detection of pneumothorax using electrical impedance tomogyaphy [J].
Costa, Eduardo L. V. ;
Chaves, Caroline N. ;
Gomes, Susimeire ;
Beraldo, Marcelo A. ;
Volpe, Marcia S. ;
Tucci, Mauro R. ;
Schettino, Lvany A. L. ;
Bohm, Stephan H. ;
Carvalho, Carlos R. R. ;
Tanaka, Harki ;
Lima, Raul G. ;
Amato, Marcelo B. P. .
CRITICAL CARE MEDICINE, 2008, 36 (04) :1230-1238
[10]  
Dorn O, 2020, INVERSE PROBL SCI EN, P1