Probing the Reactivity of the Active Material of a Li-Ion Silicon Anode with Common Battery Solvents

被引:20
|
作者
Han, Binghong [1 ]
Zhang, Yunya [1 ]
Liao, Chen [1 ]
Trask, Stephen E. [1 ]
Li, Xiang [1 ]
Uppuluri, Ritesh [1 ]
Vaughey, John T. [1 ]
Key, Baris [1 ]
Dogan, Fulya [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
关键词
lithium silicide; silicon anode solvents; NMR; EC; triglyme; FEC; EMC; SOLID-ELECTROLYTE INTERPHASE; FLUOROETHYLENE CARBONATE; ELECTROCHEMICAL CHARACTERISTICS; HIGH-CAPACITY; LITHIUM; SI; FILM; PERFORMANCE; BINDER; REDUCTION;
D O I
10.1021/acsami.1c01151
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Calculations and modeling have shown that replacing the traditional graphite anode with silicon can greatly improve the energy density of lithium-ion batteries. However, the large volume change of silicon particles and high reactivity of lithiated silicon when in contact with the electrolyte lead to rapid capacity fading during charging/discharging processes. In this report, we use specific lithium silicides (LS) as model compounds to systematically study the reaction between lithiated Si and different electrolyte solvents, which provides a powerful platform to deconvolute and evaluate the degradation of various organic solvents in contact with the active lithiated Si-electrode surface after lithiation. Nuclear Magnetic Resonance (NMR) characterization results show that a cyclic carbonate such as ethylene carbonate is chemically less stable than a linear carbonate such as ethylmethyl carbonate, fluoroethylene carbonate, and triglyme as they are found to be more stable when mixed with LS model compounds. Guided by the experimental results, two ethylene carbonate (EC)-free electrolytes are studied, and the electrochemical results show improvements with graphite-free Si electrodes relative to the traditional ethylene-carbonate-based electrolytes. More importantly, the study contributes to our understanding of the significant fundamental chemical and electrochemical stability differences between silicon and traditional graphite lithium-ion battery (LIB) anodes and suggests a focused development of electrolytes with specific chemical stability vs lithiated silicon which can passivate the surface more effectively.
引用
收藏
页码:28017 / 28026
页数:10
相关论文
共 50 条
  • [1] Electrolyte Design for Silicon-Based Li-Ion Battery Guided by Chemical Reactivity of Solvents with a Model Silicon Anode
    Woods, Eliot F.
    Wu, Dezhen
    Robertson, Lily A.
    Liu, Haoyu
    Key, Baris
    Vaughey, John T.
    Zhang, Zhengcheng
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (19): : 8294 - 8300
  • [2] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [3] Anode material of CoMnSb for rechargeable Li-ion battery
    Matsuno, Shinsuke
    Nakayama, Masanobu
    Wakihara, Masataka
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) : A61 - A65
  • [4] Synthesis of Titania for Anode Material of Li-Ion Battery
    Purwanto, Agus
    Dyartanti, Endah
    Inayati
    Sutopo, Wahyudi
    Nizam, Muhammad
    PROCEEDINGS OF THE 2013 JOINT INTERNATIONAL CONFERENCE ON RURAL INFORMATION & COMMUNICATION TECHNOLOGY AND ELECTRIC-VEHICLE TECHNOLOGY (RICT & ICEV-T), 2013,
  • [5] Fabricating and Probing Forsterite Li-ion Battery Anode Electrodes
    Kim, Dong-Ju
    Park, Byoung-Nam
    KOREAN JOURNAL OF METALS AND MATERIALS, 2022, 60 (11): : 851 - 857
  • [6] A promising active anode material of Li-ion battery for hybrid electric vehicle use
    Sato, Youh
    Nagayama, Katsuhiro
    Sato, Yuichi
    Takamura, Tsutomu
    JOURNAL OF POWER SOURCES, 2009, 189 (01) : 490 - 493
  • [7] Performances of homemade graphite as anode material for Li-ion battery
    Kan, Su-Rong
    Wu, Guo-Liang
    Lu, Shi-Gang
    Liu, Ren-Min
    Dianyuan Jishu/Chinese Journal of Power Sources, 2002, 26 (02):
  • [8] Properties of silicon/graphite/carbon anode for Li-ion battery
    Wang, Hong-Yu
    Yin, Ge-Ping
    Xu, Yu-Hong
    Zuo, Peng-Jian
    Cheng, Xin-Qun
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2010, 42 (12): : 1916 - 1920
  • [9] Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries
    Raic, Matea
    Mikac, Lara
    Maric, Ivan
    Stefanic, Goran
    Skrabic, Marko
    Gotic, Marijan
    Ivanda, Mile
    MOLECULES, 2020, 25 (04):
  • [10] Amorphous silicon as a possible anode material for Li-ion batteries
    Bourderau, S
    Brousse, T
    Schleich, DM
    JOURNAL OF POWER SOURCES, 1999, 81 : 233 - 236