Probing the Reactivity of the Active Material of a Li-Ion Silicon Anode with Common Battery Solvents

被引:20
|
作者
Han, Binghong [1 ]
Zhang, Yunya [1 ]
Liao, Chen [1 ]
Trask, Stephen E. [1 ]
Li, Xiang [1 ]
Uppuluri, Ritesh [1 ]
Vaughey, John T. [1 ]
Key, Baris [1 ]
Dogan, Fulya [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
关键词
lithium silicide; silicon anode solvents; NMR; EC; triglyme; FEC; EMC; SOLID-ELECTROLYTE INTERPHASE; FLUOROETHYLENE CARBONATE; ELECTROCHEMICAL CHARACTERISTICS; HIGH-CAPACITY; LITHIUM; SI; FILM; PERFORMANCE; BINDER; REDUCTION;
D O I
10.1021/acsami.1c01151
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Calculations and modeling have shown that replacing the traditional graphite anode with silicon can greatly improve the energy density of lithium-ion batteries. However, the large volume change of silicon particles and high reactivity of lithiated silicon when in contact with the electrolyte lead to rapid capacity fading during charging/discharging processes. In this report, we use specific lithium silicides (LS) as model compounds to systematically study the reaction between lithiated Si and different electrolyte solvents, which provides a powerful platform to deconvolute and evaluate the degradation of various organic solvents in contact with the active lithiated Si-electrode surface after lithiation. Nuclear Magnetic Resonance (NMR) characterization results show that a cyclic carbonate such as ethylene carbonate is chemically less stable than a linear carbonate such as ethylmethyl carbonate, fluoroethylene carbonate, and triglyme as they are found to be more stable when mixed with LS model compounds. Guided by the experimental results, two ethylene carbonate (EC)-free electrolytes are studied, and the electrochemical results show improvements with graphite-free Si electrodes relative to the traditional ethylene-carbonate-based electrolytes. More importantly, the study contributes to our understanding of the significant fundamental chemical and electrochemical stability differences between silicon and traditional graphite lithium-ion battery (LIB) anodes and suggests a focused development of electrolytes with specific chemical stability vs lithiated silicon which can passivate the surface more effectively.
引用
收藏
页码:28017 / 28026
页数:10
相关论文
共 50 条
  • [1] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [2] Electrolyte Design for Silicon-Based Li-Ion Battery Guided by Chemical Reactivity of Solvents with a Model Silicon Anode
    Woods, Eliot F.
    Wu, Dezhen
    Robertson, Lily A.
    Liu, Haoyu
    Key, Baris
    Vaughey, John T.
    Zhang, Zhengcheng
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (19): : 8294 - 8300
  • [3] Synthesis of Titania for Anode Material of Li-Ion Battery
    Purwanto, Agus
    Dyartanti, Endah
    Inayati
    Sutopo, Wahyudi
    Nizam, Muhammad
    PROCEEDINGS OF THE 2013 JOINT INTERNATIONAL CONFERENCE ON RURAL INFORMATION & COMMUNICATION TECHNOLOGY AND ELECTRIC-VEHICLE TECHNOLOGY (RICT & ICEV-T), 2013,
  • [4] Silicon nitride as anode material for Li-ion batteries: Understanding the SiNx conversion reaction
    Ulvestad, Asbjorn
    Mxhlen, Jan Petter
    Kirkengen, Martin
    JOURNAL OF POWER SOURCES, 2018, 399 : 414 - 421
  • [5] Recent Advances in Prelithiation of Silicon Anode: Enhanced Strategy for Boosting Practicability of Li-Ion Battery
    Bhujbal, Akshay V.
    Ng, Kok Long
    Khazraei, Sepehr
    Bekou, Jack
    Riahi, A. Reza
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (08)
  • [6] Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries
    Raic, Matea
    Mikac, Lara
    Maric, Ivan
    Stefanic, Goran
    Skrabic, Marko
    Gotic, Marijan
    Ivanda, Mile
    MOLECULES, 2020, 25 (04):
  • [7] Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries
    Ikonen, T.
    Nissinen, T.
    Pohjalainen, E.
    Sorsa, O.
    Kallio, T.
    Lehto, V. -P.
    SCIENTIFIC REPORTS, 2017, 7
  • [8] Anode material NbO for Li-ion battery and its electrochemical properties
    Li, Jian
    Liu, Wen-Wen
    Zhou, Hong-Ming
    Liu, Zhong-Zhong
    Chen, Bao-Rong
    Sun, Wen-Jiao
    RARE METALS, 2018, 37 (02) : 118 - 122
  • [9] Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery
    Qu, Erli
    Chen, Tao
    Xiao, Qizhen
    Lei, Gangtie
    Li, Zhaohui
    JOURNAL OF POWER SOURCES, 2018, 403 : 103 - 108
  • [10] Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode
    Ikonen, Timo
    Kalidas, Nathiya
    Lahtinen, Katja
    Isoniemi, Tommi
    Toppari, J. Jussi
    Vazquez, Ester
    Antonia Herrero-Chamorro, M.
    Fierro, Jose Luis G.
    Kallio, Tanja
    Lehto, Vesa-Pekka
    SCIENTIFIC REPORTS, 2020, 10 (01)