Water abundance variations around high-mass protostars: HIFI observations of the DR21 region

被引:32
作者
van der Tak, F. F. S. [1 ,2 ]
Marseille, M. G. [1 ]
Herpin, F. [3 ]
Wyrowski, F. [4 ]
Baudry, A. [3 ]
Bontemps, S. [3 ]
Braine, J. [3 ]
Doty, S. [13 ]
Frieswijk, W. [2 ]
Melnick, G. [12 ]
Shipman, R. [1 ]
van Dishoeck, E. F. [5 ,14 ]
Benz, A. O. [9 ]
Caselli, P. [15 ]
Hogerheijde, M. [5 ]
Johnstone, D. [16 ,17 ]
Liseau, R. [8 ]
Bachiller, R. [18 ]
Benedettini, M. [19 ]
Bergin, E. [20 ]
Bjerkeli, P. [8 ]
Blake, G. [21 ]
Bruderer, S. [9 ]
Cernicharo, J. [22 ]
Codella, C. [19 ]
Daniel, F. [22 ,32 ]
di Giorgio, A. M. [19 ]
Dominik, C. [23 ]
Encrenaz, P. [24 ,25 ]
Fich, M. [26 ]
Fuente, A. [18 ]
Giannini, T. [19 ]
Goicoechea, J. [22 ]
de Graauw, Th. [10 ]
Helmich, F. [1 ]
Herczeg, G. [14 ]
Jorgensen, J. [27 ]
Kristensen, L. [5 ]
Larsson, B. [28 ]
Lis, D. [21 ]
McCoey, C. [26 ]
Neufeld, D. [29 ]
Nisini, B. [19 ]
Olberg, M. [8 ]
Parise, B. [4 ,6 ]
Pearson, J. [30 ]
Plume, R. [31 ]
Risacher, C. [1 ]
Santiago, J. [18 ]
Saraceno, P. [19 ]
机构
[1] SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands
[2] Univ Groningen, Kapteyn Inst, NL-9700 AB Groningen, Netherlands
[3] Univ Groningen, Kapteyn Inst, NL-9700 AB Groningen, Netherlands
[4] Max Planck Inst Radioastron, D-5300 Bonn, Germany
[5] Leiden Univ, NL-2300 RA Leiden, Netherlands
[6] Univ Cologne, Inst Phys 1, KOSMA, D-5000 Cologne 41, Germany
[7] Univ Toulouse, CESR, Toulouse, France
[8] Chalmers, S-41296 Gothenburg, Sweden
[9] ETH, Inst Astron, CH-8093 Zurich, Switzerland
[10] Joint ALMA Observ, Santiago, Chile
[11] ESA, European Space Astron Ctr, Madrid, Spain
[12] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA
[13] Denison Univ, Granville, OH 43023 USA
[14] MPI Extraterr Phys, Garching, Germany
[15] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[16] Herzberg Inst Astrophys, Victoria, BC, Canada
[17] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 2Y2, Canada
[18] Observ Astron Nacl, Alcala De Henares, Spain
[19] Ist Fis Spazio Interplanetario, INAF, Rome, Italy
[20] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA
[21] CALTECH, Pasadena, CA 91125 USA
[22] INTA CSIC, CAB, Torrejon De Ardoz, Spain
[23] Univ Amsterdam, NL-1012 WX Amsterdam, Netherlands
[24] Observ Paris, CNRS, LERMA, Paris, France
[25] Observ Paris, CNRS, UMR 8112, Paris, France
[26] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[27] U Copenhagen, Ctr Star & Planet Format, Copenhagen, Denmark
[28] Stockholm Univ, Dept Astron, Stockholm, Sweden
[29] Johns Hopkins Univ, Baltimore, MD USA
[30] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[31] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada
[32] Observ Paris, Meudon, France
关键词
ISM: molecules; stars: formation; astrochemistry; ISM: individual objects: DR21; MONTE-CARLO METHOD; STAR-FORMATION; RADIATIVE-TRANSFER; LINE EMISSION; YOUNG STARS; CYGNUS-X; EXCITATION; EVOLUTION; H-2; ABSORPTION;
D O I
10.1051/0004-6361/201014515
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Water is a key molecule in the star formation process, but its spatial distribution in star-forming regions is not well known. Aims. We study the distribution of dust continuum and H2O and (CO)-C-13 line emission in DR21, a luminous star-forming region with a powerful outflow and a compact H II region. Methods. Herschel-HIFI spectra near 1100 GHz show narrow (CO)-C-13 10-9 emission and H2O 1(11)-0(00) absorption from the dense core and broad emission from the outflow in both lines. The H2O line also shows absorption by a foreground cloud known from ground-based observations of low-J CO lines. Results. The dust continuum emission is extended over 36 '' FWHM, while the (CO)-C-13 and H2O lines are confined to approximate to 24 '' or less. The foreground absorption appears to peak further North than the other components. Radiative transfer models indicate very low abundances of similar to 2 x 10(-10) for H2O and similar to 8 x 10(-7) for (CO)-C-13 in the dense core, and higher H2O abundances of similar to 4 x 10(-9) in the foreground cloud and similar to 7 x 10(-7) in the outflow. Conclusions. The high H2O abundance in the warm outflow is probably due to the evaporation of water-rich icy grain mantles, while the H2O abundance is kept down by freeze-out in the dense core and by photodissociation in the foreground cloud.
引用
收藏
页数:5
相关论文
共 30 条
[1]   An analysis of water line profiles in star formation regions observed by the Submillimeter Wave Astronomy Satellite [J].
Ashby, MLN ;
Bergin, EA ;
Plume, R ;
Carpenter, JM ;
Neufeld, DA ;
Chin, G ;
Erickson, NR ;
Goldsmith, PF ;
Harwit, M ;
Howe, JE ;
Kleiner, SC ;
Koch, DG ;
Patten, BM ;
Schieder, R ;
Snell, RL ;
Stauffer, JR ;
Tolls, V ;
Wang, Z ;
Winnewisser, G ;
Zhang, YF ;
Melnick, GJ .
ASTROPHYSICAL JOURNAL, 2000, 539 (02) :L115-L118
[2]   Odin observations of water in molecular outflows and shocks [J].
Bjerkeli, P. ;
Liseau, R. ;
Olberg, M. ;
Falgarone, E. ;
Frisk, U. ;
Hjalmarson, A. ;
Klotz, A. ;
Larsson, B. ;
Olofsson, A. O. H. ;
Olofsson, G. ;
Ristorcelli, I. ;
Sandqvist, Aa. .
ASTRONOMY & ASTROPHYSICS, 2009, 507 (03) :1455-U296
[3]  
Braz M. A., 1983, Astronomy & Astrophysics Supplement Series, V54, P167
[4]   The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) [J].
De Graauw, Th. ;
Helmich, F. P. ;
Phillips, T. G. ;
Stutzki, J. ;
Caux, E. ;
Whyborn, N. D. ;
Dieleman, P. ;
Roelfsema, P. R. ;
Aarts, H. ;
Assendorp, R. ;
Bachiller, R. ;
Baechtold, W. ;
Barcia, A. ;
Beintema, D. A. ;
Belitsky, V. ;
Benz, A. O. ;
Bieber, R. ;
Boogert, A. ;
Borys, C. ;
Bumble, B. ;
Cais, P. ;
Caris, M. ;
Cerulli-Irelli, P. ;
Chattopadhyay, G. ;
Cherednichenko, S. ;
Ciechanowicz, M. ;
Coeur-Joly, O. ;
Comito, C. ;
Cros, A. ;
de Jonge, A. ;
de Lange, G. ;
Delforges, B. ;
Delorme, Y. ;
den Boggende, T. ;
Desbat, J. -M. ;
Diez-Gonzalez, C. ;
Di Giorgio, A. M. ;
Dubbeldam, L. ;
Edwards, K. ;
Eggens, M. ;
Erickson, N. ;
Evers, J. ;
Fich, M. ;
Finn, T. ;
Franke, B. ;
Gaier, T. ;
Gal, C. ;
Gao, J. R. ;
Gallego, J. -D. ;
Gauffre, S. .
ASTRONOMY & ASTROPHYSICS, 2010, 518
[5]   Quasi-classical rate coefficient calculations for the rotational (de) excitation of H2O by H2 [J].
Faure, A. ;
Crimier, N. ;
Ceccarelli, C. ;
Valiron, P. ;
Wiesenfeld, L. ;
Dubernet, M. L. .
ASTRONOMY & ASTROPHYSICS, 2007, 472 (03) :1029-1035
[6]   The rotational excitation of CO by H2 [J].
Flower, DR .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2001, 34 (13) :2731-2738
[7]   A SPECTROSCOPIC STUDY OF THE DR-21 OUTFLOW SOURCE .3. THE CO LINE EMISSION [J].
GARDEN, RP ;
HAYASHI, M ;
GATLEY, I ;
HASEGAWA, T ;
KAIFU, N .
ASTROPHYSICAL JOURNAL, 1991, 374 (02) :540-554
[8]  
GIBB AG, 2005, P PROT PLAN, V5, P8194
[9]  
Hogerheijde MR, 2000, ASTRON ASTROPHYS, V362, P697
[10]   The cooling of atomic and molecular gas in DR21 [J].
Jakob, H. ;
Kramer, C. ;
Simon, R. ;
Schneider, N. ;
Ossenkopf, V. ;
Bontemps, S. ;
Graf, U. U. ;
Stutzki, J. .
ASTRONOMY & ASTROPHYSICS, 2007, 461 (03) :999-U103