Incremental Neural Synthesis for Spiking Neural Networks

被引:2
作者
Huy Le Nguyen [1 ]
Chu, Dominique [1 ]
机构
[1] Univ Kent, Sch Comp, Canterbury, Kent, England
来源
2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) | 2022年
关键词
Convolutional Spiking Neural Networks; Neural Synthesis; Incremental Learning; Multi-Spike Learning; NEURONS; TEMPOTRON; MACHINE;
D O I
10.1109/SSCI51031.2022.10022275
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an iterative neural synthesis approach to train Convolutional Spiking Neural Networks for classification problems. Unlike previous neural synthesis methods which primarily compute the neuron firing rates, our method is designed to compute multiple spikes at arbitrary timings. As such, our approach is directly applicable to spatio-temporal problems using spiking network models. In our approach, each weight update is formulated as a linear Constraint Satisfaction Problem, which can then be solved using existing numerical techniques. On the MNIST, EMNIST, and ETH-80 image classification benchmarks, our approach demonstrates competitive with other models in the literature, while requiring relatively few training samples to converge to a good solution.
引用
收藏
页码:649 / 656
页数:8
相关论文
共 62 条
[1]  
Alyamkin S, 2018, Arxiv, DOI arXiv:1810.01732
[2]   Error-backpropagation in temporally encoded networks of spiking neurons [J].
Bohte, SM ;
Kok, JN ;
La Poutré, H .
NEUROCOMPUTING, 2002, 48 :17-37
[3]   Information theory and neural coding [J].
Borst, A ;
Theunissen, FE .
NATURE NEUROSCIENCE, 1999, 2 (11) :947-957
[4]   Extreme neural machines [J].
Boucher-Routhier, Megan ;
Zhang, Bill Ling Feng ;
Thivierge, Jean-Philippe .
NEURAL NETWORKS, 2021, 144 :639-647
[5]   Simulation of networks of spiking neurons:: A review of tools and strategies [J].
Brette, Romain ;
Rudolph, Michelle ;
Carnevale, Ted ;
Hines, Michael ;
Beeman, David ;
Bower, James M. ;
Diesmann, Markus ;
Morrison, Abigail ;
Goodman, Philip H. ;
Harris, Frederick C., Jr. ;
Zirpe, Milind ;
Natschlaeger, Thomas ;
Pecevski, Dejan ;
Ermentrout, Bard ;
Djurfeldt, Mikael ;
Lansner, Anders ;
Rochel, Olivier ;
Vieville, Thierry ;
Muller, Eilif ;
Davison, Andrew P. ;
El Boustani, Sami ;
Destexhe, Alain .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2007, 23 (03) :349-398
[6]  
Cohen G, 2017, IEEE IJCNN, P2921, DOI 10.1109/IJCNN.2017.7966217
[7]   Skimming Digits: Neuromorphic Classification of Spike-Encoded Images [J].
Cohen, Gregory K. ;
Orchard, Garrick ;
Leng, Sio-Hoi ;
Tapson, Jonathan ;
Benosman, Ryad B. ;
van Schaik, Andre .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[8]   TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years [J].
DeBole, Michael V. ;
Taba, Brian ;
Amir, Arnon ;
Akopyan, Filipp ;
Andreopoulos, Alexander ;
Risk, William P. ;
Kusnitz, Jeff ;
Otero, Carlos Ortega ;
Nayak, Tapan K. ;
Appuswamy, Rathinakumar ;
Carlson, Peter J. ;
Cassidy, Andrew S. ;
Datta, Pallab ;
Esser, Steven K. ;
Garreau, Guillaume J. ;
Holland, Kevin L. ;
Lekuch, Scott ;
Mastro, Michael ;
McKinstry, Jeff ;
di Nolfo, Carmelo ;
Paulovicks, Brent ;
Sawada, Jun ;
Schleupen, Kai ;
Shaw, Benjamin G. ;
Klamo, Jennifer L. ;
Flickner, Myron D. ;
Arthur, John V. ;
Modha, Dharmendra S. .
COMPUTER, 2019, 52 (05) :20-29
[9]   Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network [J].
Demin, V. A. ;
Nekhaev, D., V ;
Surazhevsky, I. A. ;
Nikiruy, K. E. ;
Emelyanov, A., V ;
Nikolaev, S. N. ;
Rylkov, V. V. ;
Kovalchuk, M., V .
NEURAL NETWORKS, 2021, 134 :64-75
[10]  
Dodge S, 2017, 2017 26TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN 2017)