Mean-field phase diagram for Bose-Hubbard Hamiltonians with random hopping

被引:11
作者
Buonsante, P.
Massel, F.
Penna, V.
Vezzani, A.
机构
[1] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
[2] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy
[3] CNR INFM, I-43100 Parma, Italy
关键词
D O I
10.1134/S1054660X07040378
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The zero temperature phase diagram for ultracold bosons in a random 1D potential is obtained through a site decoupling mean-field scheme performed over a Bose-Hubbard (BH) Hamiltonian, whose hopping term is considered as a random variable. As for the model with random on-site potential, the presence of disorder leads to the appearance of a Bose glass phase. The different phases-i.e., Mott insulator, superfluid, and Bose glass-are characterized in terms of condensate fraction and superfluid fraction. Furthermore, the boundary of the Mott lobes is related to an off-diagonal Anderson model featuring the same disorder distribution as the original BH Hamiltonian.
引用
收藏
页码:538 / 544
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 2000, QUANTUM PHASE TRANSI, DOI [DOI 10.1017/CBO9780511622540, DOI 10.1017/CBO9780511973765]
[2]   WORLD-LINE QUANTUM MONTE-CARLO ALGORITHM FOR A ONE-DIMENSIONAL BOSE MODEL [J].
BATROUNI, GG ;
SCALETTAR, RT .
PHYSICAL REVIEW B, 1992, 46 (14) :9051-9062
[3]   Exact solution of the infinite-range-hopping Bose-Hubbard model [J].
Bru, JB ;
Dorlas, TC .
JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (1-2) :177-196
[4]   Fractional-filling loophole insulator domains for ultracold bosons in optical superlattices [J].
Buonsante, P ;
Penna, V ;
Vezzani, A .
PHYSICAL REVIEW A, 2004, 70 (06) :061603-1
[5]   Phase diagram for ultracold bosons in optical lattices and superlattices [J].
Buonsante, P ;
Vezzani, A .
PHYSICAL REVIEW A, 2004, 70 (03) :033608-1
[6]  
Buonsante P, 2005, LASER PHYS, V15, P361
[7]  
BUONSANTE P, 2006, CONDMAT0610476
[8]   Atomic Bose and Anderson glasses in optical lattices [J].
Damski, B ;
Zakrzewski, J ;
Santos, L ;
Zoller, P ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (08) :804031-804034
[9]   THE DYNAMICS OF A DISORDERED LINEAR CHAIN [J].
DYSON, FJ .
PHYSICAL REVIEW, 1953, 92 (06) :1331-1338
[10]  
FALLANI L, CONDMAT0603655