Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis

被引:61
作者
Zamboni, N
Mouncey, N
Hohmann, HP
Sauer, U
机构
[1] ETH, Swiss Fed Inst Technol, Inst Biotechnol, CH-8093 Zurich, Switzerland
[2] Roche Vitamins AG, CH-4070 Basel, Switzerland
关键词
maintenance energy; energy metabolism; metabolic engineering; respiration; riboflavin;
D O I
10.1016/S1096-7176(03)00007-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present redirection of electron flow to more efficient proton pumping branches within respiratory chains as a generally applicable metabolic engineering strategy, which tailors microbial metabolism to the specific requirements of high cell density processes by improving product and biomass yields. For the example of riboflavin production by Bacillus subtilis, we reduced the rate of maintenance metabolism by about 40% in a cytochrome bd oxidase knockout mutant. Since the putative Yth and the caa(3) oxidases were of minor importance, the most likely explanation for this improvement is translocation of two protons per transported electron via the remaining cytochrome aa(3) oxidase, instead of only one proton via the bd oxidase. The reduction of maintenance metabolism, in turn, significantly improved the yield of recombinant riboflavin and B. subtilis biomass in fed-batch cultures. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 34 条
[1]   TOWARD A SCIENCE OF METABOLIC ENGINEERING [J].
BAILEY, JE .
SCIENCE, 1991, 252 (5013) :1668-1675
[2]   ENERGETIC EFFICIENCY OF ESCHERICHIA-COLI - EFFECTS OF MUTATIONS IN COMPONENTS OF THE AEROBIC RESPIRATORY-CHAIN [J].
CALHOUN, MW ;
ODEN, KL ;
GENNIS, RB ;
DEMATTOS, MJT ;
NEIJSSEL, OM .
JOURNAL OF BACTERIOLOGY, 1993, 175 (10) :3020-3025
[3]   The commercial production of chemicals using pathway engineering [J].
Chotani, G ;
Dodge, T ;
Hsu, A ;
Kumar, M ;
LaDuca, R ;
Trimbur, D ;
Weyler, W ;
Sanford, K .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2000, 1543 (02) :434-455
[4]   Growth energetics of an alkaline serine protease-producing strain of Bacillus clausii during continuous cultivation [J].
Christiansen, T ;
Nielsen, J .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2002, 24 (05) :329-339
[5]   Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture [J].
Dauner, M ;
Storni, T ;
Sauer, U .
JOURNAL OF BACTERIOLOGY, 2001, 183 (24) :7308-7317
[6]   Stoichiometric growth model for riboflavin-producing Bacillus subtilis [J].
Dauner, M ;
Sauer, U .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (02) :132-143
[7]   Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures [J].
Dauner, M ;
Sonderegger, M ;
Hochuli, M ;
Szyperski, T ;
Wüthrich, K ;
Hohmann, HP ;
Sauer, U ;
Bailey, JE .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (04) :1760-1771
[8]   2 DIFFERENT AA3-TYPE CYTOCHROMES CAN BE PURIFIED FROM THE BACTERIUM BACILLUS-CEREUS [J].
GARCIAHORSMAN, JA ;
BARQUERA, B ;
ESCAMILLA, JE .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 199 (03) :761-768
[9]   Antibiotic-resistance cassettes for Bacillus subtilis [J].
GueroutFleury, AM ;
Shazand, K ;
Frandsen, N ;
Stragier, P .
GENE, 1995, 167 (1-2) :335-336
[10]  
Harwood C. R., 1990, MOL BIOL METHODS BAC