Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball

被引:27
作者
Dhanya, R. [1 ]
Morris, Q. [2 ]
Shivaji, R. [2 ]
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, Avda Esteban Iturra S-N, Concepcion, Chile
[2] Univ N Carolina, Dept Math & Stat, 116 Petty Bldg,POB 26170, Greensboro, NC 27402 USA
关键词
Existence; Superlinear semipositone problems; Nonlinear and Dirichlet boundary conditions; Exterior domain; NONNEGATIVE SOLUTIONS; ELLIPTIC-EQUATIONS; NONEXISTENCE; UNIQUENESS;
D O I
10.1016/j.jmaa.2015.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study positive radial solutions to -Delta u = lambda K(vertical bar x vertical bar) f(u); x is an element of Omega(e) where lambda > 0 is a parameter, Omega(e) = {x is an element of R-N vertical bar vertical bar x vertical bar > r(0), r(0) > 0, N > 2}, A is the Laplacian operator, K is an element of C ([r(0), infinity), (0, infinity)) satisfies K(r) <= 1/r(N+u); mu > 0 for r >> 1, and f is an element of C-1 ([0, infinity), R) is a class of non -decreasing functions satisfying lim(s ->infinity) f (s)/s = infinity (superlinear) and f(0) < 0 (semipositone). We consider solutions, u, such that u -> 0 as vertical bar x vertical bar -> infinity, and which also satisfy the nonlinear boundary condition partial derivative u/partial derivative eta + <(c)over tilde>(u)u = 0 when vertical bar x vertical bar = r(0), where partial derivative/partial derivative eta is the outward normal derivative, and (c) over tilde is an element of C ([0, infinity), (0, infinity)). We will establish the existence of a positive radial solution for small values of the parameter lambda. We also establish a similar result for the case when u satisfies the Dirichlet boundary condition (u = 0) for vertical bar x vertical bar = r(0). We establish our results via variational methods, namely using the Mountain Pass Lemma. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1533 / 1548
页数:16
相关论文
共 26 条
[1]   Positive solutions for a class of superlinear semipositone systems on exterior domains [J].
Abebe, Abraham ;
Chhetri, Maya ;
Sankar, Lakshmi ;
Shivaji, R. .
BOUNDARY VALUE PROBLEMS, 2014, :1-9
[2]   UNIQUENESS AND STABILITY OF NONNEGATIVE SOLUTIONS FOR SEMIPOSITONE PROBLEMS IN A BALL [J].
ALI, I ;
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (03) :775-782
[3]  
Allegretto W., 1992, DIFFERENTIAL INTEGRA, V5, P95
[4]  
[Anonymous], 1994, Differ. Integr. Equ
[5]  
[Anonymous], 1986, CBMS REG C SER MATH
[6]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[7]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[8]  
Brown K.J., 1989, DIFFER INTEGRAL EQU, V2, P541
[9]   INSTABILITY OF NONNEGATIVE SOLUTIONS FOR A CLASS OF SEMIPOSITONE PROBLEMS [J].
BROWN, KJ ;
SHIVAJI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (01) :121-124
[10]   POSITIVE RADIAL SOLUTIONS FOR ELLIPTIC EQUATIONS ON EXTERIOR DOMAINS WITH NONLINEAR BOUNDARY CONDITIONS [J].
Butler, Dagny ;
Ko, Eunkyung ;
Lee, Eun Kyoung ;
Shivaji, R. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) :2713-2731