Hermite-Hadamard inequalities for relative semi-convex functions and applications

被引:19
作者
Noor, Muhammad Aslam [1 ]
Noor, Khalida Inayat [1 ]
Awan, Muhammad Uzair [1 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
关键词
convex functions; relative semi-convex functions; Hermite-Hadamard inequality; means; GENERAL VARIATIONAL-INEQUALITIES; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; FORMULA;
D O I
10.2298/FIL1402221N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some Hermite-Hadamard inequalities for the class of relative semi-convex functions. Several special cases are also discussed. Thus it is worth mentioning that our results can be viewed as a generalization of previous results. Some applications to special means are also presented. Ideas and techniques of this paper may inspire further research in various branches of pure and applied sciences.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 50 条
  • [31] Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications
    Mohammed, Pshtiwan Othman
    Vivas-Cortez, Miguel
    Abdeljawad, Thabet
    Rangel-Oliveros, Yenny
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 7316 - 7331
  • [32] HERMITE-HADAMARD'S INEQUALITIES FOR η-CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL INTEGRALS AND RELATED INEQUALITIES
    Khan, M. Adil
    Khurshid, Y.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02): : 157 - 169
  • [33] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Kiris, Mehmet Eyup
    [J]. MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 491 - 501
  • [34] SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Alomari, Mohammad W.
    Darus, Maslina
    Kirmaci, Ugur S.
    [J]. ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1643 - 1652
  • [35] HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR (p, h)-CONVEX FUNCTIONS
    Hao, Zhiwei
    Li, Libo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 1269 - 1284
  • [36] HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRICALLY r-CONVEX FUNCTIONS
    Xi, Bo-Yan
    Qi, Feng
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2014, 51 (04) : 530 - 546
  • [37] REFINEMENT OF HERMITE-HADAMARD TYPE INEQUALITIES FOR S-CONVEX FUNCTIONS
    Krtinic, Dorde
    Mikic, Marija
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (02) : 997 - 1005
  • [38] Some Hermite-Hadamard type inequalities for functions whose exponentials are convex
    Dragomir, Silvestru Sever
    Gomm, Ian
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (04): : 527 - 534
  • [39] Fractional Hermite-Hadamard Integral Inequalities for a New Class of Convex Functions
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Zeng, Shengda
    Kashuri, Artion
    [J]. SYMMETRY-BASEL, 2020, 12 (09):
  • [40] New Hermite-Hadamard type Inequalities for Harmonically-Convex Functions
    Latif, Muhammad Amer
    Hussain, Sabir
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (06): : 1 - 16