Convergence of an MPFA finite volume scheme for a two-phase porous media flow model with dynamic capillarity

被引:16
作者
Cao, X. [1 ]
Nemadjieu, S. F. [2 ]
Pop, I. S. [3 ,4 ]
机构
[1] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[2] Dr Nemadjieu Consulting, Dr Luppe Pl 1, D-90443 Nurnberg, Germany
[3] Hasselt Univ, Fac Sci, Campus Diepenbeek,Agoralaan Bldg D, BE-3590 Diepenbeek, Belgium
[4] Univ Bergen, Dept Math, POB 7800, N-5020 Bergen, Norway
基金
加拿大自然科学与工程研究理事会; 比利时弗兰德研究基金会;
关键词
two-phase flow in porous media; dynamic capillary pressure; nonlinear system; pseudoparabolic problem; finite volume scheme; multi-point flux approximation; O-method; ELEMENT-METHOD; LINEARIZATION SCHEME; EQUATIONS; PRESSURE; DISCRETIZATIONS; APPROXIMATION; SIMULATION; EXISTENCE; ROBUST;
D O I
10.1093/imanum/drx078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss an O-type multi-point flux approximation finite volume scheme for the discretization of a system modelling two-phase flow in porous media. The particular feature in this model is that dynamic effects are taken into account in the capillary pressure. This leads to a nonlinear system of three evolution equations, written in terms of the nonwetting-phase saturation and of the two pressures. Based on a priori estimates and compactness arguments, we prove the convergence of the numerical approximation to the weak solution. In the final part, we present numerical results that confirm the convergence analysis. These results show that the method is first-order convergent for the flux, and second-order convergent for the saturation and the pressures.
引用
收藏
页码:512 / 544
页数:33
相关论文
共 67 条
[1]   An introduction to multipoint flux approximations for quadrilateral grids [J].
Aavatsmark, I .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :405-432
[2]  
Agelas L., 2010, INT J FINITE, V7
[3]   Finite volume approximation of degenerate two-phase flow model with unlimited air mobility [J].
Andreianov, Boris ;
Eymard, Robert ;
Ghilani, Mustapha ;
Marhraoui, Nouzha .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (02) :441-474
[4]  
[Anonymous], GRADUATE STUDIES MAT
[5]  
[Anonymous], 2016, GRADIENT DISCRETISAT
[6]   THE EXISTENCE OF WEAK SOLUTIONS TO SINGLE POROSITY AND SIMPLE DUAL-POROSITY MODELS OF 2-PHASE INCOMPRESSIBLE-FLOW [J].
ARBOGAST, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (11) :1009-1031
[7]   A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media [J].
Arbogast, T ;
Wheeler, MF ;
Zhang, NY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) :1669-1687
[8]  
Bear J., 1972, Dynamics of Fluids in Porous Media
[9]  
Bergamaschi L, 1999, INT J NUMER METH ENG, V45, P1025, DOI 10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.3.CO
[10]  
2-7