DNA translocation through polyelectrolyte modified hairy nanopores

被引:11
|
作者
Das, Pradipta Kr. [1 ]
机构
[1] Tata Steel, Global R&D, Jamshedpur 831001, Bihar, India
关键词
DNA sequencing; Polyelectrolyte brush; Electrophoresis; Soft nanopore; Current blockade; Translocation speed; SOLID-STATE NANOPORES; PLASMONIC NANOPORES; TRANSPORT; CAPTURE; ION; MANIPULATION; BRUSHES; MOTION; FORCE;
D O I
10.1016/j.colsurfa.2017.06.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
DNA translocation through nanopore has attracted researcher over the last decade due their immense potential for application in next generation sequencingtechnique. One of the major challenges of nanopore based DNA sequencing technique is to slow down the translocation speed for precise characterization. In this article, DNA translocation through nanopore functionalized with polyelectrolyte brush has been investigated theoretically. The effect of polyelectrolyte properties (its charge density and softness degree) on DNA translocation speed has been studied for different salt concentration and nanopore radius. The results show that, an increase in polyelectrolyte fixed charged density and softness degree helps in slowing down the DNA translocation speed. Even though a larger diameter nanopore can results in slight reduction in DNA translocation speed at higher salt concentration, it causes significant reduction in current blockade ratio and therefore a larger nanopore is not suitable for sequencing purpose. The results provide significant insight on DNA translocation through soft nanopore which can be applied in designing next generation DNA sequencing device.
引用
收藏
页码:942 / 949
页数:8
相关论文
共 50 条
  • [1] DNA translocation through polyelectrolyte-modified nanopores: An analytical approximation
    Das, Pradipta Kr
    ELECTROPHORESIS, 2018, 39 (11) : 1370 - 1374
  • [2] Simulation study on the translocation of polyelectrolyte through conical nanopores
    Sun, Li-Zhen
    Li, Haibin
    Xu, Xiaojun
    Luo, Meng-Bo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (49)
  • [3] Translocation Regulation of Single - stranded DNA through Modified Protein Nanopores
    Huang, Qimeng
    Wang, Deqiang
    Zhao, Qitao
    Guan, Xiyun
    2015 INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2015, : 267 - 271
  • [4] DNA Translocation Through Graphene Nanopores
    Merchant, Chris
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 521 - 521
  • [5] DNA Translocation through Graphene Nanopores
    Schneider, Gregory F.
    Kowalczyk, Stefan W.
    Calado, Victor E.
    Pandraud, Gregory
    Zandbergen, Henny W.
    Vandersypen, Lieven M. K.
    Dekker, Cees
    NANO LETTERS, 2010, 10 (08) : 3163 - 3167
  • [6] DNA translocation through an array of kinked nanopores
    Chen, Zhu
    Jiang, Yingbing
    Dunphy, Darren R.
    Adams, David P.
    Hodges, Carter
    Liu, Nanguo
    Zhang, Nan
    Xomeritakis, George
    Jin, Xiaozhong
    Aluru, N. R.
    Gaik, Steven J.
    Hillhouse, Hugh W.
    Brinker, C. Jeffrey
    NATURE MATERIALS, 2010, 9 (08) : 667 - 675
  • [7] DNA Translocation through Hybrid Bilayer Nanopores
    Balasubramanian, Ramkumar
    Pal, Sohini
    Joshi, Himanshu
    Rao, Anjana
    Naik, Akshay
    Varma, Manoj
    Chakraborty, Banani
    Maiti, Prabal K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (18): : 11908 - 11916
  • [8] DNA translocation through an array of kinked nanopores
    Chen Z.
    Jiang Y.
    Dunphy D.R.
    Adams D.P.
    Hodges C.
    Liu N.
    Zhang N.
    Xomeritakis G.
    Jin X.
    Aluru N.R.
    Gaik S.J.
    Hillhouse H.W.
    Brinker C.J.
    Nature Materials, 2010, 9 (8) : 667 - 675
  • [9] Thermophoretic Manipulation of DNA Translocation through Nanopores
    He, Yuhui
    Tsutsui, Makusu
    Scheicher, Ralph H.
    Bai, Fan
    Taniguchi, Masateru
    Kawai, Tomoji
    ACS NANO, 2013, 7 (01) : 538 - 546
  • [10] Energy behaviour for DNA translocation through graphene nanopores
    Alshehri, Mansoor H.
    Cox, Barry J.
    Hill, James M.
    JOURNAL OF THEORETICAL BIOLOGY, 2015, 387 : 68 - 75