Global well-posedness for a fifth-order shallow water equation in Sobolev spaces

被引:12
作者
Yang, Xingyu [1 ]
Li, Yongsheng [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Shallow water equation; Global well-posedness; 1-method; Almost conservation law; Bilinear estimates; CAUCHY-PROBLEM; WEAK SOLUTIONS;
D O I
10.1016/j.jde.2010.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cauchy problem of a fifth-order shallow water equation partial derivative(t)u - partial derivative(2)(x)partial derivative(t)u + partial derivative(3)(x)u + 3u partial derivative(x)u - 2 partial derivative(x)u partial derivative(2)(x)u - u partial derivative(3)(x)u - partial derivative(5)(x)u = 0 is shown to be globally well-posed in Sobolev spaces H-s(R) for s > (6 root 10 - 17)/4. The proof relies on the 1-method developed by Colliander, Keel, Staffilani. Takaoka and Tao. For this equation lacks scaling invariance, we reconsider the local result and pay special attention to the relationship between the lifespan of the local solution and the initial data. We prove the almost conservation law, and combine it with the local result to obtain the global well-posedness. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1458 / 1472
页数:15
相关论文
共 19 条
  • [1] [Anonymous], CONT MATH
  • [2] Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
  • [3] Byers P. J., 2003, THESIS U NOTRE DAME
  • [4] AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS
    CAMASSA, R
    HOLM, DD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1661 - 1664
  • [5] Colliander J, 2002, MATH RES LETT, V9, P659
  • [6] Global well-posedness for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 649 - 669
  • [7] Sharp global well-posedness for KDV and modified KDV on R and T
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 705 - 749
  • [8] Colliander J., 2001, Electron. J. Differ. Equ, V2001, P1
  • [9] Global weak solutions for a shallow water equation
    Constantin, A
    Molinet, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) : 45 - 61
  • [10] Gorsky J., 2004, THESIS U NOTRE DAME