THE K-THEORY OF THE C*-ALGEBRAS OF 2-RANK GRAPHS ASSOCIATED TO COMPLETE BIPARTITE GRAPHS

被引:2
作者
Mutter, Sam A. [1 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NH 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
higher-rank graphs; graph algebras; K-theory; BUILDINGS; LATTICES;
D O I
10.1017/S1446788721000161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a result of Vdovina, we may associate to each complete connected bipartite graph kappa a two-dimensional square complex, which we call a tile complex, whose link at each vertex is kappa. We regard the tile complex in two different ways, each having a different structure as a 2-rank graph. To each 2-rank graph is associated a universal C*-algebra, for which we compute the K-theory, thus providing a new infinite collection of 2-rank graph algebras with explicit K-groups. We determine the homology of the tile complexes and give generalisations of the procedures to complexes and systems consisting of polygons with a higher number of sides.
引用
收藏
页码:119 / 144
页数:26
相关论文
共 16 条
[1]  
[Anonymous], 2002, New York J. Math.
[2]  
Burger M, 2000, PUBL MATH-PARIS, P151
[3]  
Evans G., 2008, New York J. Math., V14, P1
[4]  
KIRCHBERG E, 1994, CLASSIFICATION PUREL
[5]   CLASSIFYING POLYGONAL ALGEBRAS BY THEIR K0-GROUP [J].
Konter, Johan ;
Vdovina, Alina .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2015, 58 (02) :485-497
[6]  
Kumjian, 2000, NEW YORK J MATH, V6, P1
[7]   Maximal torsion-free subgroups of certain lattices of hyperbolic buildings and Davis complexes [J].
Norledge, William ;
Thomas, Anne ;
Vdovina, Alina .
GEOMETRIAE DEDICATA, 2018, 193 (01) :121-143
[8]  
Phillips N.C., 2000, DOC MATH, V5, P49
[9]   Higher-rank graphs and their C*-algebras [J].
Raeburn, I ;
Sims, A ;
Yeend, T .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :99-115
[10]  
Raeburn I., 2005, GRAPH ALGEBRAS