Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC)

被引:50
作者
Munoz, Leonardo DeSilva [1 ]
Erable, Benjamin [1 ]
Etcheverry, Luc [1 ]
Riess, Julien [1 ]
Basseguy, Regine [1 ]
Bergel, Alain [1 ]
机构
[1] Univ Toulouse, CNRS, Lab Genie Chim, F-31432 Toulouse, France
关键词
Hydrogen; Microbial electrolysis cell (MEC); Stainless steel; Phosphate; ELECTROCHEMICAL DEPROTONATION; FUEL-CELLS; MEMBRANE;
D O I
10.1016/j.elecom.2009.11.017
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Microbial electrolysis cells (MEC) must work around neutral pH because of microbial catalysis at the anode. To develop a hydrogen evolution cathode that can work at neutral pH remains a major challenge in MEC technology. Voltammetry performed at pH 8.0 on rotating disk electrodes showed that the presence of phosphate species straightforwardly multiplied the current density of hydrogen evolution, through the so-called cathodic deprotonation reaction. The mechanism was stable on stainless steel cathodes whereas it rapidly vanished on platinum. The phosphate/stainless steel system implemented in a 25 L MEC with a marine microbial anode led to hydrogen evolution rates of up to 4.9 L/h/m(2) under 0.8 V voltage, which were of the same order than the best performance values reported so far. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:183 / 186
页数:4
相关论文
共 17 条
  • [1] Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
    Call, Douglas
    Logan, Bruce E.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (09) : 3401 - 3406
  • [2] High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells
    Call, Douglas F.
    Merrill, Matthew D.
    Logan, Bruce E.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (06) : 2179 - 2183
  • [3] Electrochemical deprotonation of phosphate on stainless steel
    Da Silva, S
    Basséguy, R
    Bergel, A
    [J]. ELECTROCHIMICA ACTA, 2004, 49 (26) : 4553 - 4561
  • [4] Steady state voltammetry at microelectrodes for the hydrogen evolution from strong and weak acids under pseudo-first and second order kinetic conditions
    Daniele, S
    Lavagnini, I
    Baldo, MA
    Magno, F
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 404 (01): : 105 - 111
  • [5] Sampling Natural Biofilms: A New Route to Build Efficient Microbial Anodes
    Erable, Benjamin
    Roncato, Marie-Anne
    Achouak, Wafa
    Bergel, Alain
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (09) : 3194 - 3199
  • [6] HARNISCH F, 2009, B ENV, V89, P455
  • [7] Lide D. R., 2007, CRC HDB CHEM PHYS
  • [8] Electrochemically assisted microbial production of hydrogen from acetate
    Liu, H
    Grot, S
    Logan, BE
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (11) : 4317 - 4320
  • [9] Microbial fuel cells: Methodology and technology
    Logan, Bruce E.
    Hamelers, Bert
    Rozendal, Rene A.
    Schrorder, Uwe
    Keller, Jurg
    Freguia, Stefano
    Aelterman, Peter
    Verstraete, Willy
    Rabaey, Korneel
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (17) : 5181 - 5192
  • [10] Exoelectrogenic bacteria that power microbial fuel cells
    Logan, Bruce E.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2009, 7 (05) : 375 - 381