A facile synthesis of Ag/AgCl hybrid nanostructures with tunable morphologies and compositions as advanced visible light plasmonic photocatalysts

被引:22
作者
Shahzad, Aasim [1 ]
Kim, Woo-Sik [1 ]
Yu, Taekyung [1 ]
机构
[1] Kyung Hee Univ, Dept Chem Engn, Coll Engn, Yongin 446701, South Korea
基金
新加坡国家研究基金会;
关键词
CONCENTRATED SILVER NANOPARTICLES; AQUEOUS-PHASE SYNTHESIS; AG-AT-AGCL; HIGHLY EFFICIENT; TITANIUM-DIOXIDE; CARBON-DIOXIDE; TIO2; WATER; SEMICONDUCTOR; REDUCTION;
D O I
10.1039/c6dt00993j
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
This paper describes a simple and fast aqueous-phase route to the synthesis of Ag/AgCl hybrid nanostructures. These hybrid nanostructures were synthesized by reduction of AgCl nanoparticles with controlled shapes prepared by reacting Ag+ with Cl-in the presence of polyethyleneimine (PEI) in an aqueous-phase. We could easily control the morphology and composition of the nanostructures by varying the experimental conditions, including the reaction temperature and the amount of the reducing agent. The as-synthesized Ag/AgCl hybrid nanostructures exhibited enhanced photocatalytic activity and stability during the degradation of methyl orange under visible light irradiation because of their strong surface plasmon resonance (SPR) effect.
引用
收藏
页码:9158 / 9165
页数:8
相关论文
共 48 条
[1]   Converting AgCl nanocubes to sunlight-driven plasmonic AgCl:Ag nanophotocatalyst with high activity and durability [J].
An, Changhua ;
Wang, Ruiping ;
Wang, Shutao ;
Zhang, Xiaoyun .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (31) :11532-11536
[2]   Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst [J].
An, Changhua ;
Peng, Sheng ;
Sun, Yugang .
ADVANCED MATERIALS, 2010, 22 (23) :2570-2574
[3]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[4]   Effects of surface anchoring groups (Carboxylate vs phosphonate) in ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions [J].
Bae, EY ;
Choi, WY ;
Park, JW ;
Shin, HS ;
Kim, SB ;
Lee, JS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (37) :14093-14101
[5]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[6]   Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2% [J].
Chen, Yong-Siou ;
Choi, Hyunbong ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (24) :8822-8825
[7]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[8]   A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism [J].
Georgekutty, Reenamole ;
Seery, Michael K. ;
Pillai, Suresh C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (35) :13563-13570
[9]   The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study [J].
Glaus, S ;
Calzaferri, G .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2003, 2 (04) :398-401
[10]   Plasmonics beyond the diffraction limit [J].
Gramotnev, Dmitri K. ;
Bozhevolnyi, Sergey I. .
NATURE PHOTONICS, 2010, 4 (02) :83-91