The paucity of universal compacta in cohomological dimension

被引:0
|
作者
Rubin, Leonard R. [1 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
Absolute co-extensor; Absolute extensor; Cohomological dimension; CW-complex; Dimension Direct limit; Direct system; Eilenberg MacLane complex; Extension theory; Finite homotopy domination; Moore space; Perfect space; Pseudo-compact; Stone tech compactification; Universal compactum; EXTENSION THEORY; PROJECTIVE PLANE; DIRECT LIMITS; MAPS;
D O I
10.1016/j.topol.2017.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a class of spaces. An element Z is an element of C is called universal for C if each element of C embeds in Z. It is well-known that for each n is an element of N, there exists a universal element for the class of metrizable compacta X of (covering) dimension dim X <= n. The situation in cohomological dimension over an abelian group G, denoted dim(G), is almost the opposite. Our results will imply in contradistinction that for each nontrivial abelian group G and for n >= 2, there exists no universal element for the class of metrizable compacta X with dime X <= n. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:243 / 276
页数:34
相关论文
共 50 条