Second Hankel Determinant for a Certain Subclass of Bi-Close to Convex Functions Defined by Kaplan

被引:4
作者
Kanas, Stanislawa [1 ]
Sivasankari, Pesse, V [2 ]
Karthiyayini, Roy [2 ]
Sivasubramanian, Srikandan [3 ]
机构
[1] Rzeszow Univ, Dept Math Anal, Al Rejtana 16c, PL-35959 Rzeszow, Poland
[2] PES Univ, Dept Sci & Humanities, Elect City Campus, Bangalore 560100, Karnataka, India
[3] Anna Univ Chennai, Univ Coll Engn Tindivanam, Dept Math, Tindivanam 604001, Tamil Nadu, India
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 04期
关键词
bi-univalent functions; bi-convex functions; bi-close-to-convex functions; Hankel determinant; UNIVALENT; COEFFICIENT; STARLIKE;
D O I
10.3390/sym13040567
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider the class of strongly bi-close-to-convex functions of order alpha and bi-close-to-convex functions of order beta. We obtain an upper bound estimate for the second Hankel determinant for functions belonging to these classes. The results in this article improve some earlier result obtained for the class of bi-convex functions.
引用
收藏
页数:12
相关论文
共 30 条
[1]   Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions [J].
Ali, Rosihan M. ;
Lee, See Keong ;
Ravichandran, V. ;
Supramaniam, Shamani .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :344-351
[2]  
[Anonymous], 1958, CALIFORNIA MONOGRAPH
[3]  
Babalola K.O., 2003, INEQUALITY THEORY AP, V2
[4]  
Brannan D. A., 1980, Aspects of Contemporary Complex Analysis
[5]  
Brannan D.A., 1986, Mathematical Analysis and Its Applications, V31, P70, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
[6]   Second Hankel determinant for certain subclasses of bi-univalent functions [J].
Caglar, Murat ;
Deniz, Erhan ;
Srivastava, Hari Mohan .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (03) :694-706
[7]   Second Hankel determinant for bi-starlike and bi-convex functions of order β [J].
Deniz, Erhan ;
Caglar, Murat ;
Orhan, Halit .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 :301-307
[8]  
Dienes P, 1957, The Taylor Series. An Introduction To the Theory of Functions of A Complex Variable
[9]  
Edrei A., 1940, Compos Math, V7, P20
[10]  
Fekete M., 1993, J. Lond. Math. Soc, V8, P85