Correction of Copy Number Variation Data Using Principal Component Analysis

被引:0
作者
Chen, Jiayu [1 ]
Liu, Jingyu [1 ,2 ]
Calhoun, Vince D. [1 ,2 ]
机构
[1] Univ New Mexico, Dept Elect Engn, Albuquerque, NM 87131 USA
[2] Mind Res Network, Albuquerque, NM USA
来源
2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW) | 2010年
基金
美国国家卫生研究院;
关键词
copy number variation; Log R Ratio; principal component analysis;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Copy number variation (CNV) detection using SNP array data is challenging due to the low signal-to-noise ratio. In this study, we propose a principal component analysis (PCA) based correction to eliminate variance in CNV data induced by potential confounding factors. Simulations show a substantial improvement in CNV detection accuracy after correction. We also observe a significant improvement in data quality in real SNP array data after correction.
引用
收藏
页码:827 / 828
页数:2
相关论文
共 50 条
  • [41] Principal Component Analysis of symmetric fuzzy data
    Giordani, P
    Kiers, HAL
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (03) : 519 - 548
  • [42] Data evaluation in chromatography by principal component analysis
    Cserhati, T.
    BIOMEDICAL CHROMATOGRAPHY, 2010, 24 (01) : 20 - 28
  • [43] Quantum data compression by principal component analysis
    Chao-Hua Yu
    Fei Gao
    Song Lin
    Jingbo Wang
    Quantum Information Processing, 2019, 18
  • [44] Principal component analysis for Hilbertian functional data
    Kim, Dongwoo
    Lee, Young Kyung
    Park, Byeong U.
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (01) : 149 - 161
  • [45] A novel method for atmospheric correction of cosmic-ray data based on principal component analysis
    Savic, M.
    Dragic, A.
    Maletic, D.
    Veselinovic, N.
    Banjanac, R.
    Jokovic, D.
    Udovicic, V.
    ASTROPARTICLE PHYSICS, 2019, 109 : 1 - 11
  • [46] Copy number variation detection using partial alignment information
    Zare, Fatima
    Ansari, Sardar
    Najarian, Kayvan
    Nabavi, Sheida
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2435 - 2441
  • [47] A DECISION PROCEDURE FOR DETERMINING THE NUMBER OF COMPONENTS IN PRINCIPAL COMPONENT ANALYSIS
    HUANG, DY
    TSENG, ST
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 30 (01) : 63 - 71
  • [48] Genomic copy number variation analysis in multiple system atrophy
    Hama, Yuka
    Katsu, Masataka
    Takigawa, Ichigaku
    Yabe, Ichiro
    Matsushima, Masaaki
    Takahashi, Ikuko
    Katayama, Takayuki
    Utsumi, Jun
    Sasaki, Hidenao
    MOLECULAR BRAIN, 2017, 10
  • [49] Analysis of Genomic Copy Number Variation Across Psychiatric Disorders
    Klein, Marieke
    Shanta, Omar
    Hong, Oanh
    MacDonald, Jeffrey
    Thiruvahindrapuram, Bhooma
    de Pins, Agathe
    Charney, Alexander
    Letovsky, Stan Stan
    Humphrey, Jake
    Douard, Elise
    Saci, Zohra
    Jacquemont, Sebastien
    Scherer, Stephen
    Sebat, Jonathan
    BIOLOGICAL PSYCHIATRY, 2021, 89 (09) : S106 - S107
  • [50] Sensitivity to copy number variation analysis in single cell genomics
    Tu, Jing
    Zhou, Yue
    Tao, Yuhan
    Lu, Na
    Yang, Yixuan
    Lu, Zuhong
    GENE, 2022, 808