Correction of Copy Number Variation Data Using Principal Component Analysis

被引:0
作者
Chen, Jiayu [1 ]
Liu, Jingyu [1 ,2 ]
Calhoun, Vince D. [1 ,2 ]
机构
[1] Univ New Mexico, Dept Elect Engn, Albuquerque, NM 87131 USA
[2] Mind Res Network, Albuquerque, NM USA
来源
2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW) | 2010年
基金
美国国家卫生研究院;
关键词
copy number variation; Log R Ratio; principal component analysis;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Copy number variation (CNV) detection using SNP array data is challenging due to the low signal-to-noise ratio. In this study, we propose a principal component analysis (PCA) based correction to eliminate variance in CNV data induced by potential confounding factors. Simulations show a substantial improvement in CNV detection accuracy after correction. We also observe a significant improvement in data quality in real SNP array data after correction.
引用
收藏
页码:827 / 828
页数:2
相关论文
共 50 条
  • [1] Principal Component Analysis of Triangular Fuzzy Number Data
    Chen, Na-xin
    Zhang, Yun-jie
    FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 797 - 808
  • [2] A Novel Approach for Automated Skew Correction of Vehicle Number Plate Using Principal Component Analysis
    Bodade, Rajesh
    Pachori, Ram Bilas
    Gupta, Aakash
    Kanani, Pritesh
    Yadav, Deepak
    2013 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMMUNICATION, CONTROL, SIGNAL PROCESSING AND COMPUTING APPLICATIONS (IEEE-C2SPCA-2013), 2013,
  • [3] Reducing system noise in copy number data using principal components of self-self hybridizations
    Lee, Yoon-ha
    Ronemus, Michael
    Kendall, Jude
    Lakshmi, B.
    Leotta, Anthony
    Levy, Dan
    Esposito, Diane
    Grubor, Vladimir
    Ye, Kenny
    Wigler, Michael
    Yamrom, Boris
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (03) : E103 - E110
  • [4] Copy Number Variation Detection Using Single Cell Sequencing Data
    Zare, Fatima
    Stark, Jacob
    Nabavi, Sheida
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [5] Research on the Correction of Spatial Heterodyne Interference Data Based on Principal Component Analysis
    Wang, Xin-qiang
    Wang, Zhen
    Qin, Shan
    Xiong, Wei
    Wang, Fang-yuan
    Ye, Song
    Nie, Kun
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44 (12) : 3333 - 3338
  • [6] Gene selection for microarray data analysis using principal component analysis
    Wang, AT
    Gehan, EA
    STATISTICS IN MEDICINE, 2005, 24 (13) : 2069 - 2087
  • [7] Interpolation of signals with missing data using Principal Component Analysis
    P. Oliveira
    L. Gomes
    Multidimensional Systems and Signal Processing, 2010, 21 : 25 - 43
  • [8] Interpolation of signals with missing data using Principal Component Analysis
    Oliveira, P.
    Gomes, L.
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2010, 21 (01) : 25 - 43
  • [9] Using principal component analysis in process performance for multivariate data
    Wang, FK
    Du, TCT
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2000, 28 (02): : 185 - 194
  • [10] SAR Data Fusion Using Nonlinear Principal Component Analysis
    Fasano, Luca
    Latini, Daniele
    Machidon, Alina
    Clementini, Chiara
    Schiavon, Giovanni
    Del Frate, Fabio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1543 - 1547