Modules over monads and initial semantics

被引:22
作者
Hirschowitz, Andre [1 ]
Maggesi, Marco [2 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, UMR 6621, F-06108 Nice 2, France
[2] Univ Florence, I-50134 Florence, Italy
关键词
Linear transformations;
D O I
10.1016/j.ic.2009.07.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inspired by the classical theory of modules over a monoid, we introduce the natural notion of module over a monad. The associated notion of morphism of left modules ("linear" natural transformations) captures an important property of compatibility with substitution, not only in the so-called homogeneous case but also in the heterogeneous case where "terms" and variables therein could be of different types. In this paper, we present basic constructions of modules and we show how modules allow a new point of view concerning higher-order syntax and semantics. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:545 / 564
页数:20
相关论文
共 30 条
[1]  
Altenkirch T, 1999, LECT NOTES COMPUT SC, V1683, P453
[2]  
[Anonymous], 2004, HOMOTOPY THEORY RELA, DOI [10.1090/conm/346/06287, DOI 10.1090/CONM/346/06287]
[3]  
[Anonymous], J FUNCT PROGRAM
[4]  
Aydemir B., 2005, P 18 INT C THEOR PRO
[5]  
Beck Jon, 1969, SEMINAR TRIPLES CATE, P119, DOI 10.1007/BFb0083084
[6]  
Bentz B. J., 2000, Western Journal of Applied Forestry, V15, P122
[7]  
BOHM G, 2008, 806 ARXIV
[8]  
Chandrashekar Varadaraj, 2003, Reprod Biol, V3, P7
[9]  
Chicli L, 2002, LECT NOTES COMPUT SC, V2646, P95
[10]   Bar constructions for topological operads and the Goodwillie derivatives of the identity [J].
Ching, M .
GEOMETRY & TOPOLOGY, 2005, 9 :833-933