HR-Si prism coupled tightly confined spoof surface plasmon polaritons mode for terahertz sensing

被引:35
作者
Huang, Yi [1 ]
Zhong, Shuncong [1 ,2 ]
Shi, Tingting [1 ]
Shen, Yao-Chun [3 ]
Cui, Daxiang [4 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Lab Opt Terahertz & Nondestruct Testing, Fuzhou 350108, Fujian, Peoples R China
[2] Sch Mechatron Engn & Automat, Dept Precis Mech Engn, Shanghai 200072, Peoples R China
[3] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England
[4] Shanghai Jiao Tong Univ, Dept Bionano Sci & Engn, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
SPECTROSCOPY; SENSORS; WAVES;
D O I
10.1364/OE.27.034067
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report a high-resistivity silicon (HR-Si) prism coupled terahertz (THz) spoof surface plasmon polaritons (SSPPs) on flat subwavelength metasurface. Using a high refractive index prism as an external coupler, a more tightly confined SSPPs mode can be excited in a smaller resonant cavity, leading to strong light-matter interaction. Besides, theoretical analysis and experimental results have both indicated that the SSPPs resonance response to the filling patterns of analyte in the resonant cavity are quite different. In particular, we have found that the interaction between analyte and SSPPs wave can be maximized when the analyte filled with the whole resonant cavity and a higher sensitivity for THz sensing can be obtained. A high sensitivity varied from 0.31 THz/RIU to 0.85 THz/RIU is predicted. Furthermore, these SSPPs modes exhibit high Q-factor, and characteristic spectra of water caused by surface plasmon resonance (SPR) are observed, which is significant in promoting the THz-SPR sensing of polar liquids or aqueous analytes with THz metasurfaces. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:34068 / 34079
页数:12
相关论文
共 36 条
[31]   Dual band terahertz waveguiding on a planar metal surface patterned with annular holes [J].
Williams, C. R. ;
Misra, M. ;
Andrews, S. R. ;
Maier, S. A. ;
Carretero-Palacios, S. ;
Rodrigo, S. G. ;
Garcia-Vidal, F. J. ;
Martin-Moreno, L. .
APPLIED PHYSICS LETTERS, 2010, 96 (01)
[32]   High-mode spoof SPP of periodic metal grooves for ultra-sensitive terahertz sensing [J].
Yao, Haizi ;
Zhong, Shuncong .
OPTICS EXPRESS, 2014, 22 (21) :25149-25160
[33]   The application of terahertz spectroscopy to liquid petrochemicals detection: A review [J].
Yin, Ming ;
Tang, Shoufeng ;
Tong, Minming .
APPLIED SPECTROSCOPY REVIEWS, 2016, 51 (05) :379-396
[34]   Terahertz Microfluidic Metamaterial Biosensor for Sensitive Detection of Small-Volume Liquid Samples [J].
Zhang, Rui ;
Chen, Qingming ;
Liu, Kai ;
Chen, Zefeng ;
Li, Kaidi ;
Zhang, Xuming ;
Xu, Jianbin ;
Pickwell-MacPherson, Emma .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2019, 9 (02) :209-214
[35]   A graphene based tunable terahertz sensor with double Fano resonances [J].
Zhang, Yuping ;
Li, Tongtong ;
Zeng, Beibei ;
Zhang, Huiyun ;
Lv, Huanhuan ;
Huang, Xiaoyan ;
Zhang, Weili ;
Azad, Abul K. .
NANOSCALE, 2015, 7 (29) :12682-12688
[36]   Progress in terahertz nondestructive testing: A review [J].
Zhong, Shuncong .
FRONTIERS OF MECHANICAL ENGINEERING, 2019, 14 (03) :273-281