Ancestry and progeny of nutrient amino acid transporters

被引:52
作者
Boudko, DY
Kohn, AB
Meleshkevitch, EA
Dasher, MK
Seron, TJ
Stevens, BR
Harvey, WR
机构
[1] Univ Florida, Whitney Lab Marine Biosci, St Augustine, FL 32080 USA
[2] Univ N Florida, Dept Biol, Jacksonville, FL 32224 USA
[3] Univ Florida, Coll Med, Dept Physiol & Funct Genom, Gainesville, FL 32652 USA
关键词
D O I
10.1073/pnas.0405183101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The biosynthesis of structural and signaling molecules depends on intracellular concentrations of essential amino acids, which are maintained by a specific system of plasma membrane transporters. We identify a unique population of nutrient amino acid transporters (NATs) within the sodium-neurotransmitter symporter family and have characterized a member of the NAT subfamily from the larval midgut of the Yellow Fever vector mosquito, Aedes aegypti (aeAAT1, AAR08269), which primarily supplies phenylalanine, an essential substrate for the synthesis of neuronal and cuticular catecholamines. Further analysis suggests that NATs constitute a comprehensive transport metabolon for the epithelial uptake and redistribution of essential amino acids including precursors of several neurotransmitters. In contrast to the highly conserved subfamily of orthologous neurotransmitter transporters, lineage-specific, paralogous NATs undergo rapid gene multiplication/substitution that enables a high degree of evolutionary plasticity of nutrient amino acid uptake mechanisms and facilitates environmental and nutrient adaptations of organisms. These findings provide a unique model for understanding the molecular mechanisms, physiology, and evolution of amino acid and neurotransmitter transport systems and imply that monoamine and GABA transporters evolved by selection and conservation of earlier neuronal NATs.
引用
收藏
页码:1360 / 1365
页数:6
相关论文
共 27 条
[1]   Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters [J].
Androutsellis-Theotokis, A ;
Goldberg, NR ;
Ueda, K ;
Beppu, T ;
Beckman, ML ;
Das, S ;
Javitch, JA ;
Rudnick, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (15) :12703-12709
[2]  
Boudko DY, 2001, J EXP BIOL, V204, P691
[3]   Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder [J].
Bröer, A ;
Klingel, K ;
Kowalczuk, S ;
Rasko, JEJ ;
Cavanaugh, J ;
Bröer, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (23) :24467-24476
[4]   Cloning and characterization of a potassium-coupled amino acid transporter [J].
Castagna, M ;
Shayakul, C ;
Trotti, D ;
Sacchi, VF ;
Harvey, WR ;
Hediger, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :5395-5400
[5]   Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6 [J].
Chen, NH ;
Reith, MEA ;
Quick, MW .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2004, 447 (05) :519-531
[6]  
CLAROS MG, 1994, COMPUT APPL BIOSCI, V10, P685
[7]  
Clements AN, 1992, BIOL MOSQUITOES
[8]   EXPRESSION CLONING OF A MAMMALIAN PROTON-COUPLED OLIGOPEPTIDE TRANSPORTER [J].
FEI, YJ ;
KANAI, Y ;
NUSSBERGER, S ;
GANAPATHY, V ;
LEIBACH, FH ;
ROMERO, MF ;
SINGH, SK ;
BORON, WF ;
HEDIGER, MA .
NATURE, 1994, 368 (6471) :563-566
[9]   A novel electrogenic amino acid transporter is activated by K+ or Na+, is alkaline pH-dependent, and is Cl--independent [J].
Feldman, DH ;
Harvey, WR ;
Stevens, BR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (32) :24518-24526
[10]  
Hecker KH, 1996, BIOTECHNIQUES, V20, P478