Update of INO-ICAL reconstruction algorithm

被引:3
|
作者
Seth, S. [1 ]
Bhatt, A. [2 ,3 ]
Majumder, G. [3 ]
Mishra, A. [4 ]
机构
[1] Saha Inst Nucl Phys, Kolkata, India
[2] Homi Bhabha Natl Inst, Bombay, Maharashtra, India
[3] Tata Inst Fundamental Res, Bombay, Maharashtra, India
[4] Indian Inst Technol Madras, Madras, Tamil Nadu, India
来源
JOURNAL OF INSTRUMENTATION | 2018年 / 13卷
关键词
Pattern recognition; cluster finding; calibration and fitting methods; Simulation methods and programs; Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter etc); Resistive-plate chambers; DETECTOR;
D O I
10.1088/1748-0221/13/09/P09015
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The INO-ICAL is a proposed neutrino physics experiment, which will be made of 50 kTon of low carbon magnetized steel layers, tiled with 4mx2mx56 mm thick plates, alternating with layers of RPCs as a sensitive detector. The GEANT4 toolkit is used to simulate the matter particle interactions and digitization is based on the data collected in the prototype detector at Madurai. The momentum and direction of charged particle tracks are estimated using the Kalman filter technique and reconstruction of hadron shower using a clustering algorithm. In this paper, the measurement of the momentum of fully contained charge particles using the total path length of the trajectory will be discussed and compared with the Kalman filter technique. A clustering algorithm for the measurement of the energy of hadronic showers along with its direction will also be discussed. This hadron clustering algorithm is used first time in the ICAL detector simulation.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] FPGA implementation of a deep learning algorithm for real-time signal reconstruction in particle detectors under high pile-up conditions
    Ortiz Arciniega, J. L.
    Carrio, F.
    Valero, A.
    JOURNAL OF INSTRUMENTATION, 2019, 14 (09)
  • [22] APRIL: a novel Algorithm for Particle Reconstruction at ILC
    Li, B.
    Ete, R.
    Grenier, G.
    Laktineh, I.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (05):
  • [23] A reconstruction algorithm based on sparse representation for Raman signal processing under high background noise
    Fan, X. G.
    Wang, X. F.
    Wang, X.
    Xu, Y. J.
    Que, J.
    He, H.
    Wang, X. D.
    Tang, M.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [24] Improving primary-vertex reconstruction with a minimum-cost lifted multicut graph partitioning algorithm
    Kostyukhin, V.
    Keuper, M.
    Ibragimov, I.
    Owtscharenko, N.
    Cristinziani, M.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (07):
  • [25] A neural network based algorithm for MRPC position reconstruction
    Yu, Y.
    Chen, X.
    Wang, Y.
    Han, D.
    Guo, B.
    Wang, F.
    Shen, C.
    Zhang, Q.
    Li, Y.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (10):
  • [26] A fast and efficient SIMD track reconstruction algorithm for the LHCb upgrade 1 VELO-PIX detector
    Hennequin, A.
    Couturier, B.
    Gligorov, V. V.
    Ponce, S.
    Quagliani, R.
    Lacassagne, L.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (06):
  • [27] A new track reconstruction algorithm for the Mu3e experiment based on a fast multiple scattering fit
    Kozlinskiy, A.
    Schoening, A.
    Kiehn, M.
    Berger, N.
    Schenk, S.
    JOURNAL OF INSTRUMENTATION, 2014, 9
  • [28] Vectorized PoCA algorithm for faster image reconstruction for Muon Tomography
    Sehgal, Raman
    JOURNAL OF INSTRUMENTATION, 2023, 18 (03)
  • [29] Voxelization based PoCA point cloud filtration algorithm for image reconstruction for Muon Tomography
    Sehgal, R.
    Mitra, M. Sengupta
    Roy, Tushar
    Sehgal, S. T.
    Pant, L. M.
    Nayak, B. K.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (09):
  • [30] Wire-cell 3D pattern recognition techniques for neutrino event reconstruction in large LArTPCs: algorithm description and quantitative evaluation with MicroBooNE simulation
    Abratenko, P.
    An, R.
    Anthony, J.
    Arellano, L.
    Asaadi, J.
    Ashkenazi, A.
    Balasubramanian, S.
    Baller, B.
    Barnes, C.
    Barr, G.
    Basque, V
    Bathe-Peters, L.
    Rodrigues, O. Benevides
    Berkman, S.
    Bhanderi, A.
    Bhat, A.
    Bishai, M.
    Blake, A.
    Bolton, T.
    Book, J. Y.
    Camilleri, L.
    Caratelli, D.
    Terrazas, I. Caro
    Fernandez, R. Castillo
    Cavanna, F.
    Cerati, G.
    Chen, Y.
    Cianci, D.
    Conrad, J. M.
    Convery, M.
    Cooper-Troendle, L.
    Crespo-Anadon, J., I
    Del Tutto, M.
    Dennis, S. R.
    Detje, P.
    Devitt, A.
    Diurba, R.
    Dorrill, R.
    Duffy, K.
    Dytman, S.
    Eberly, B.
    Ereditato, A.
    Evans, J. J.
    Fine, R.
    Aguirre, G. A. Fiorentini
    Fitzpatrick, R. S.
    Fleming, B. T.
    Foppiani, N.
    Franco, D.
    Furmanski, A. P.
    JOURNAL OF INSTRUMENTATION, 2022, 17 (01):