Effect of a dc bias field on the dynamic hysteresis of single-domain ferromagnetic particles

被引:34
作者
Dejardin, P. M. [1 ]
Kalmykov, Yu. P. [1 ]
Kashevsky, B. E. [2 ]
El Mrabti, H. [1 ]
Poperechny, I. S. [3 ]
Raikher, Yu. L. [3 ]
Titov, S. V. [4 ]
机构
[1] Univ Perpignan, Lab Math Phys & Syst, F-66860 Perpignan, France
[2] Belarusian Acad Sci, Inst Heat & Mass Transfer, Minsk 220072, BELARUS
[3] Russian Acad Sci, Ural Branch, Inst Continuum Media Mech, Perm 614013, Russia
[4] Russian Acad Sci, Inst Radio Engn & Elect, Fryazino 141190, Russia
关键词
STONER-WOHLFARTH MODEL; THERMAL FLUCTUATIONS; SUSCEPTIBILITY; NANOPARTICLE; RELAXATION; ANISOTROPY; RESONANCE; LOSSES;
D O I
10.1063/1.3359722
中图分类号
O59 [应用物理学];
学科分类号
摘要
Dynamic magnetic hysteresis in uniaxial superparamagnetic nanoparticles in superimposed ac and dc magnetic fields of arbitrary amplitude is considered using Brown's model of coherent rotation of the magnetization. The dependence of the area of the dynamic hysteresis loop on the temperature, frequency, and ac and dc bias fields is analyzed. In particular, the dynamic hysteresis loop of a single-domain ferromagnetic particle is substantially altered by applying a relatively weak dc field. Furthermore, it is shown that at intermediate to low ac field amplitudes, the dc bias field permits tuning of the magnetic power absorption of the particles, while for strong ac field amplitudes the effect becomes entirely analogous to that produced by the exchange biased anisotropy. Simple analytical formulas are provided in the linear response regime for the steady-state magnetization and loop area, exhibiting perfect agreement with the numerical solution of Brown's Fokker-Planck equation. Comparison with previous results is also given. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3359722]
引用
收藏
页数:6
相关论文
共 30 条
[1]   EFFECT OF A MAGNETIC FIELD ON SUPERPARAMAGNETIC RELAXATION TIME [J].
AHARONI, A .
PHYSICAL REVIEW, 1969, 177 (02) :793-&
[2]   THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE [J].
BROWN, WF .
PHYSICAL REVIEW, 1963, 130 (05) :1677-+
[3]   THERMAL FLUCTUATIONS OF FINE FERROMAGNETIC PARTICLES [J].
BROWN, WF .
IEEE TRANSACTIONS ON MAGNETICS, 1979, 15 (05) :1196-1208
[4]  
Coffey W. T., 2004, The Langevin Equation
[5]   Relaxation of the magnetization in uniaxial single-domain ferromagnetic particles driven by a strong ac magnetic field [J].
Dejardin, Pierre-Michel ;
Kalmykov, Yuri P. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (12)
[6]   Hysteresis losses of magnetic nanoparticle powders in the single domain size range [J].
Dutz, S. ;
Hergt, R. ;
Muerbe, J. ;
Mueller, R. ;
Zeisberger, M. ;
Andrae, W. ;
Toepfer, J. ;
Bellemann, M. E. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 308 (02) :305-312
[7]   Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles [J].
Fortin, Jean-Paul ;
Gazeau, Florence ;
Wilhelm, Claire .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2008, 37 (02) :223-228
[8]   Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia [J].
Fortin, Jean-Paul ;
Wilhelm, Claire ;
Servais, Jacques ;
Menager, Christine ;
Bacri, Jean-Claude ;
Gazeau, Florence .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (09) :2628-2635
[9]   Thermal effects in a Stoner-Wohlfarth model and their influence on magnetic anisotropy determination [J].
Franco, V ;
Conde, A .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 278 (1-2) :28-38
[10]   THERMAL FLUCTUATION AFTEREFFECT MODEL FOR SOME SYSTEMS WITH FERROMAGNETIC-ANTIFERROMAGNETIC COUPLING [J].
FULCOMER, E ;
CHARAP, SH .
JOURNAL OF APPLIED PHYSICS, 1972, 43 (10) :4190-&