Brain Cell Type Specific Gene Expression and Co-expression Network Architectures

被引:264
|
作者
McKenzie, Andrew T. [1 ,2 ,3 ]
Wang, Minghui [1 ,2 ]
Hauberg, Mads E. [1 ,2 ,4 ,5 ,6 ]
Fullard, John F. [1 ,2 ,7 ]
Kozlenkov, Alexey [7 ,8 ]
Keenan, Alexandra [1 ,2 ,3 ]
Hurd, Yasmin L. [4 ,7 ,9 ]
Dracheva, Stella [4 ,7 ]
Casaccia, Patrizia [1 ,2 ,4 ,9 ,10 ]
Roussos, Panos [1 ,2 ,4 ,7 ,8 ]
Zhang, Bin [1 ,2 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Icahn Inst Genom & Multiscale Biol, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Med Scientist Training Program, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Friedman Brain Inst, New York, NY 10029 USA
[5] Lundbeck Fdn Initiat Integrat Psychiat Res, iPSYCH, DK-8000 Aarhus, Denmark
[6] Aarhus Univ, Dept Biomed, DK-8000 Aarhus, Denmark
[7] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA
[8] James J Peters VA Med Ctr, Mental Illness Res Educ & Clin Ctr VISN 2, Bronx, NY USA
[9] Icahn Sch Med Mt Sinai, Fishberg Dept Neurosci, New York, NY 10029 USA
[10] CUNY, Neurosci Initiat, Adv Sci Res Ctr, 85 St Nicholas Terrace, New York, NY 10031 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
DNA METHYLATION; TRANSCRIPTOME; MICROGLIA; RESOURCE; DATABASE; REVEALS; NEURONS; PROTEIN; GLIA;
D O I
10.1038/s41598-018-27293-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Elucidating brain cell type specific gene expression patterns is critical towards a better understanding of how cell-cell communications may influence brain functions and dysfunctions. We set out to compare and contrast five human and murine cell type-specific transcriptome-wide RNA expression data sets that were generated within the past several years. We defined three measures of brain cell type-relative expression including specificity, enrichment, and absolute expression and identified corresponding consensus brain cell "signatures," which were well conserved across data sets. We validated that the relative expression of top cell type markers are associated with proxies for cell type proportions in bulk RNA expression data from postmortem human brain samples. We further validated novel marker genes using an orthogonal ATAC-seq dataset. We performed multiscale coexpression network analysis of the single cell data sets and identified robust cell-specific gene modules. To facilitate the use of the cell type-specific genes for cell type proportion estimation and deconvolution from bulk brain gene expression data, we developed an R package, BRETIGEA. In summary, we identified a set of novel brain cell consensus signatures and robust networks from the integration of multiple datasets and therefore transcend limitations related to technical issues characteristic of each individual study.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Brain Cell Type Specific Gene Expression and Co-expression Network Architectures
    Andrew T. McKenzie
    Minghui Wang
    Mads E. Hauberg
    John F. Fullard
    Alexey Kozlenkov
    Alexandra Keenan
    Yasmin L. Hurd
    Stella Dracheva
    Patrizia Casaccia
    Panos Roussos
    Bin Zhang
    Scientific Reports, 8
  • [2] Author Correction: Brain Cell Type Specific Gene Expression and Co-expression Network Architectures
    Andrew T. McKenzie
    Minghui Wang
    Mads E. Hauberg
    John F. Fullard
    Alexey Kozlenkov
    Alexandra Keenan
    Yasmin L. Hurd
    Stella Dracheva
    Patrizia Casaccia
    Panos Roussos
    Bin Zhang
    Scientific Reports, 11
  • [3] Brain Cell Type Specific Gene Expression and Co-expression Network Architectures (vol 8, 8868, 2018)
    McKenzie, Andrew T.
    Wang, Minghui
    Hauberg, Mads E.
    Fullard, John F.
    Kozlenkov, Alexey
    Keenan, Alexandra
    Hurd, Yasmin L.
    Dracheva, Stella
    Casaccia, Patrizia
    Roussos, Panos
    Zhang, Bin
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Gene Expression Deconvolution Implicates Cell-Type-Specific Gene Expression and Co-Expression in Autism
    Wang, Jiebiao
    Devlin, Bernie
    Roeder, Kathryn
    BIOLOGICAL PSYCHIATRY, 2020, 87 (09) : S60 - S61
  • [5] Human brain cell type-specific gene co-expression associated with autism spectrum disorder
    Lin, Yiping
    Li, Shuchao
    Ji, Guoli
    Guan, Jinting
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 2083 - 2089
  • [6] The Arabidopsis gene co-expression network
    Burks, David J.
    Sengupta, Soham
    De, Ronika
    Mittler, Ron
    Azad, Rajeev K.
    PLANT DIRECT, 2022, 6 (04)
  • [7] Cell type characterization of spatiotemporal gene co-expression modules in Down syndrome brain
    Seol, Sihwan
    Kwon, Joonhong
    Kang, Hyo Jung
    ISCIENCE, 2023, 26 (01)
  • [8] Gene Co-Expression Network Analysis in Schizophrenia
    Roussos, Panos
    BIOLOGICAL PSYCHIATRY, 2013, 73 (09) : 24S - 24S
  • [9] Estimating Cell-Type-Specific Gene Co-Expression Networks from Bulk Gene Expression Data with an Application to Alzheimer's Disease
    Su, Chang
    Zhang, Jingfei
    Zhao, Hongyu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 811 - 824
  • [10] A Research for Weighted Gene Co-expression Network Model
    Wang, Jun
    Wang, Weiping
    Liu, Wen
    Zhou, Zhong
    Wang, Xiaoying
    2012 INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND COMMUNICATION TECHNOLOGY (ICCECT 2012), 2012, : 770 - 773