How many transcription factors does it take to turn on the heme oxygenase-1 gene?

被引:326
作者
Alam, Jawed [1 ]
Cook, Julia L. [1 ]
机构
[1] Ochsner Med Ctr, Dept Mol Genet, New Orleans, LA 70121 USA
关键词
heme oxygenase-1; transcription factors; HSF; AP-1; NF-kappa B;
D O I
10.1165/rcmb.2006-0340TR
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ability to communicate with the environment and respond to changes-particularly those of an adverse nature-within that environment is critical for cell function and survival. A key component of the overall cellular stress response includes adjustments in the gene expression program in favor of proteins that manifest activities capable of frustrating and eventually eliminating the molecular constituents of the stress condition. One protein providing such cytoprotective activity is heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting reaction in heme catabolism (i.e., the oxidative cleavage of b-type heme molecules to yield equimolar quantities of biliverdin IX alpha, carbon monoxide, and iron). Because of the potent antioxidant, anti-inflammatory, and signaling properties of the reaction products, the HO-1 gene (hmox1) is frequently activated under a variety of cellular stress conditions. Cells use multiple signaling pathways and transcription factors to fine-tune their response to a specific circumstance. Among these factors, members of the heat-shock factor, nuclear factor-kappa B, nuclear factor-erythroid 2, and activator protein-1 families are arguably the most important regulators of the cellular stress response in vertebrates. Although there is functional overlap between individual families, each broadly regulates different aspects of the cellular stress response and thus, with some exceptions, modulates the expression of different sets of targets genes. To the best of our knowledge, hmox1 is unique in that it is proposed to be directly regulated by all four of these stress-responsive transcription factors. In this article we provide a review and analysis of the data supporting this proposition.
引用
收藏
页码:166 / 174
页数:9
相关论文
共 85 条
[1]   Overexpressed nuclear factor-κB can participate in endogenous C-reactive protein induction, and enhances the effects of C/EBPβ and signal transducer and activator of transcription-3 [J].
Agrawal, A ;
Cha-Molstad, H ;
Samols, D ;
Kushner, I .
IMMUNOLOGY, 2003, 108 (04) :539-547
[2]  
Alam J, 2000, J BIOL CHEM, V275, P27694
[3]   Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene [J].
Alam, J ;
Stewart, D ;
Touchard, C ;
Boinapally, S ;
Choi, AMK ;
Cook, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26071-26078
[4]  
ALAM J, 1994, J BIOL CHEM, V269, P1001
[5]  
Alam J, 2004, ANTIOXID REDOX SIGN, V6, P924, DOI 10.1089/ars.2004.6.924
[6]   Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway [J].
Alam, J ;
Cook, JL .
CURRENT PHARMACEUTICAL DESIGN, 2003, 9 (30) :2499-2511
[7]   Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2 [J].
Alam, J ;
Killeen, E ;
Gong, PF ;
Naquin, R ;
Hu, B ;
Stewart, D ;
Ingelfinger, JR ;
Nath, KA .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2003, 284 (04) :F743-F752
[8]  
ALAM J, 1994, J BIOL CHEM, V269, P25049
[9]  
ALAM J, 1992, J BIOL CHEM, V267, P21894
[10]  
Alam J, 2005, HEME OXYGENASE: THE ELEGANT ORCHESTRATION OF ITS PRODUCTS IN MEDICINE, P377